3个回答
2019-04-17
展开全部
第二题
原式=∫(0,1)1/(3x+1)²dx
=(1/3)*∫(0,1)1/(3x+1)²d(3x+1)
=(1/3)*〔- 1/(3x+1)〕|(0,1)
=(1/3)*〔-1/4 - (-1)〕
=(1/3)*(3/4)
=1/4
第三题
设t=√x
原式=∫(0,2)4t²/(1+t)dt
=∫(0,2)〔4t-4t/(1+t)〕dt
=∫(0,2)〔4t-4+4/(1+t)〕dt
=〔2t²-4t+4ln(1+t)〕|(0,2)
=4ln3
满意请采纳噢~
原式=∫(0,1)1/(3x+1)²dx
=(1/3)*∫(0,1)1/(3x+1)²d(3x+1)
=(1/3)*〔- 1/(3x+1)〕|(0,1)
=(1/3)*〔-1/4 - (-1)〕
=(1/3)*(3/4)
=1/4
第三题
设t=√x
原式=∫(0,2)4t²/(1+t)dt
=∫(0,2)〔4t-4t/(1+t)〕dt
=∫(0,2)〔4t-4+4/(1+t)〕dt
=〔2t²-4t+4ln(1+t)〕|(0,2)
=4ln3
满意请采纳噢~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1. I = ∫<1, 2>(20-10x-4x^2+2x^3)
= [20x-5x^2-(4/3)x^3+(1/2)x^4] <1, 2> = 19/6;
2. I = (1/3)∫<0, 1>d(3x+1)/(3x+1)^2
= -(1/3)[1/(3x+1)]<0, 1> = 1/4
3. 令 u = √x, 则 I = ∫<0, 2>[2u/(1+u)]2udu
= 4∫<0, 2>[(u^2+u-u-1+1)/(1+u)]du
= 4∫<0, 2>[u-1+1/(1+u)]du
= [2u^2 - 4u + 4ln(1+u)]<0, 2> = 4ln3
4. I = ∫<0, e>ln(1+x)d(x+1)
= [(x+1)ln(x+1)] <0, e> - ∫<0, e>dx
= (e+1)ln(e+1) - e
= [20x-5x^2-(4/3)x^3+(1/2)x^4] <1, 2> = 19/6;
2. I = (1/3)∫<0, 1>d(3x+1)/(3x+1)^2
= -(1/3)[1/(3x+1)]<0, 1> = 1/4
3. 令 u = √x, 则 I = ∫<0, 2>[2u/(1+u)]2udu
= 4∫<0, 2>[(u^2+u-u-1+1)/(1+u)]du
= 4∫<0, 2>[u-1+1/(1+u)]du
= [2u^2 - 4u + 4ln(1+u)]<0, 2> = 4ln3
4. I = ∫<0, e>ln(1+x)d(x+1)
= [(x+1)ln(x+1)] <0, e> - ∫<0, e>dx
= (e+1)ln(e+1) - e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询