2个回答
展开全部
∫(x-e^x)sin2xdx=∫xsin2xdx - ∫e^xsin2x dx
f(x)=∫xsin2xdx, g(x)=∫e^xsin2x dx
则f(x)=-0.5∫xdcos2x = -0.5xcos2x +0.5∫cos2xdx = -0.5xcos2x +0.25 sin2x +C
g(x)=∫sin2xde^x =e^x sin2x -2∫e^xcos2xdx = e^xsin2x -2∫cos2xde^x
=e^xsin2x - 2e^xcos2x +4∫e^xsin2x dx = e^xsin2x - 2e^xcos2x+4g(x)
g(x)= e^x(2cos2x-sin2x)/3 +C
f(x)=∫xsin2xdx, g(x)=∫e^xsin2x dx
则f(x)=-0.5∫xdcos2x = -0.5xcos2x +0.5∫cos2xdx = -0.5xcos2x +0.25 sin2x +C
g(x)=∫sin2xde^x =e^x sin2x -2∫e^xcos2xdx = e^xsin2x -2∫cos2xde^x
=e^xsin2x - 2e^xcos2x +4∫e^xsin2x dx = e^xsin2x - 2e^xcos2x+4g(x)
g(x)= e^x(2cos2x-sin2x)/3 +C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询