展开全部
求微分方程 yy''=y'+(y')²的通解
解:令y'=dy/dx=p;则y''=dp/dx=(dp/dy)(dy/dx)=p(dp/dy);
代入原式得:yp(dp/dy)=p+p²;消去一个p,得:y(dp/dy)=1+p;
分离变量得:dp/(1+p)=dy/y;积分之得:ln(1+p)=lny+lnc₁=lnc₁y;
故1+p=c₁y,即p=dy/dx=c₁y-1;故dy/(c₁y-1)=dx;
积分之:∫dy/(c₁y-1)=(1/c₁)∫[1/(c₁y-1)]d(c₁y-1)=(1/c₁)ln[(c₁y-1)]=x+lnc₂;
把lnc₂移到左边得:(1/c₁)ln[(c₁y-1)/c₂]=x; 故ln[(c₁y-1)/c₂]=c₁x;
(c₁y-1)/c₂=e^(c₁x); c₁y-1=c₂e^(c₁x); c₁y=c₂e^(c₁x)+1;
故通解y=(c₂/c₁)e^(c₁x)+1/c₁;故应选C。
解:令y'=dy/dx=p;则y''=dp/dx=(dp/dy)(dy/dx)=p(dp/dy);
代入原式得:yp(dp/dy)=p+p²;消去一个p,得:y(dp/dy)=1+p;
分离变量得:dp/(1+p)=dy/y;积分之得:ln(1+p)=lny+lnc₁=lnc₁y;
故1+p=c₁y,即p=dy/dx=c₁y-1;故dy/(c₁y-1)=dx;
积分之:∫dy/(c₁y-1)=(1/c₁)∫[1/(c₁y-1)]d(c₁y-1)=(1/c₁)ln[(c₁y-1)]=x+lnc₂;
把lnc₂移到左边得:(1/c₁)ln[(c₁y-1)/c₂]=x; 故ln[(c₁y-1)/c₂]=c₁x;
(c₁y-1)/c₂=e^(c₁x); c₁y-1=c₂e^(c₁x); c₁y=c₂e^(c₁x)+1;
故通解y=(c₂/c₁)e^(c₁x)+1/c₁;故应选C。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询