这道曲线积分怎么做
dx=dt-cost dt
dy=sint dt
带入那个积分表达式
[(t-sint-pi-1+cost)(dt-costdt) + (t-sint-pi+1-cost)sintdt] / [(t-sint-pi)^2 + (1-cost)^2]
化简后在0到2pi上积分即可
这个是图像:
</p><p><img>b64543a98226cffc1e178a82b9014a90f603eac4<\/img></p>
2021-01-25 广告
都算几遍了,没错
∂[(x-y)/(x²+y²)/∂y
=[-1(x²+y²)-(x-y).2y](x²+y²)²
=[-x²-y²-2xy+2y²](x²+y²)²
=[-x²-2xy+y²](x²+y²)²
∂[(x+y)/(x²+y²)/∂x
=[(x²+y²)-(x+y).2x]/(x²+y²)²
=[-x²+y²-2xy]/(x²+y²)²
积分与路径无关。
红线:左侧竖线:x=-π,y=0~a,向上,dy>0
dx=0,
∫[(x-y)dx+(x+y)dy]/(x²+y²)
=∫(0,a)(-π+y)dy/(π²+y²)
=-1/π∫(0,a)1/(1+(y/π)².dy+∫(0,a)y/(π²+y²).dy
=-∫(0,a)1/(1+(y/π)².d(y/π)+(1/2)∫(0,a)1/(π²+y²).d(π²+y²)
=-arctan(y/π)|(0,a)+(1/2)ln(π²+y²)|(0,a)
=-arctan(a/π)+(1/2)[ln(π²+a²)-ln(π²)]
=-arctan(a/π)+(1/2)[ln(π²+a²)/π²)]
=-arctan(a/π)+ln√(1+(a/π)²).........√
上边:y=a,x=-π~π,从左到右,dx>0,dy=0
积分=∫[(x-y)dx+(x+y)dy]/(x²+y²)
=∫(-π,π)[(x-a)dx/(x²+a²)
=∫(-π,π)x/(x²+a²).dx-a∫(-π,π)1/(x²+a²).dx
=0(奇函数)-(1/a)∫(-π,π)1/((x/a)²+1).dx
=-∫(-π,π)1/((x/a)²+1).d(x/a)
=-arctan(x/a)|(-π,π)
=-[arctan(π/a)-arctan(-π/a)]
=-2arctan(π/a)..............................√
右边,x=π,y=a~0,从上到下,dy<0,dx=0
∫[(x-y)dx+(x+y)dy]/(x²+y²)
=∫(a,0)(π+y)dy/(π²+y²)
=(1/π)∫(a,0)1/(1+(y/π)²].dy+(1/2)∫(a,0)1/(π²+y²).d(π²+y²)
=arctan(y/π)|(a,0)+(1/2)ln(π²+y²)|(a,0)
=-arctan(a/π)+(1/2)[ln(π²)-ln(π²+a²)]
=-arctan(a/π)-ln√(1+(a/π)²)..............................√
合计:
-arctan(a/π)+ln√(1+(a/π)²)-2arctan(π/a)-arctan(a/π)-ln√(1+(a/π)²)
=-2arctan(a/π)-2arctan(π/a)
=-2[arctan(a/π)+arctan(π/a)]
余角的正切,互为倒数,arctan(a/π)+arctan(π/a)=π/2
上式=-π
沿-π~π的上半圆:r=√(x²+y²)=π,x=πcosθ,y=πsinθ,θ=π~0
dx=-πsinθdθ,dy=πcosθdθ
∫[(x-y)dx+(x+y)dy]/(x²+y²)
=∫(π,0)[(πcosθ-πsinθ)(-πsinθdθ)+(πcosθ+πsinθ)πcosθdθ]/(π²)
=∫(π,0)[(cosθ-sinθ)(-sinθ)+(cosθ+sinθ)cosθ]dθ
=∫(π,0)[-sinθcosθ+sin²θ+cos²θ+sinθcosθ]dθ
=∫(π,0)dθ
=-π
结果一致。
最简单的路径是(-π,0)到(π,0),但是经过原点,分母分子都是0,是奇点。积分无意义。
=[0,a]∫(-2π)/(y²+π²)dy+[-π,π]∫(x-a)/(x²+a²)dx
=[0,a]∫(-2π)/(y²+π²)dy+[0,π]∫(-2a)/(x²+a²)dx
=[0,a](-2atctan(y/π))+[0,π](-2arctan(x/a))
=-2atctan(a/π)-2arctan(π/a)
=-2(arctan(a/π)+arctan(π/a))
=-π,if a>0
=π,if a<0
让a=0积分不更简单啊?被积函数是奇函数,在-π到π积分主值是0,但是在原点是个一阶极点,留数是1,运用小圆弧引理,得到极点积分是-π,所以最终结果是-π。
或者你选半圆的积分x=πcosθ,y=πsinθ。θ从-π到0。可以化简成∫dθ=-π。