设随机变量x的概率密度为f x(x){2/9,0<x<3 0,其他。求随机变量Y=2X 6的密度
FY(y)=P(Y<=y)=P(2X+3<=y)=P(X<=(y-3)/2)=FX((y-3)/2)
fY(y)=F'Y(y)=f((y-3)/2)*1/2={(y-3)/8,3<y<7;0
其他2.y=2x+3单调且反函数为x=(y-3)/2,dx/
∫∫f(x,y)dxdy=1,可得k=1/8
P{X+Y≤4﹜=∫∫f(x,y)dxdy=∫dx∫k(6-x-y)dy=2/3,(前面的积分下上限为0和2,后面的积分下上限为2和x-4)积分限的确定要画图0。
积分出来的 P{X+Y≤4﹜=∫∫f(x,y)dxdy=∫dx∫k(6-x-y)dy=k∫(x^2/2-4x+6)dx=1/8*(x^3/6-2x^3+6x)|(0,2)=1/8*16/3=2/3。
扩展资料:
一般说来,一个随机变量所取的值可以是离散的(如掷一颗骰子的点数只取1到6的整数,电话台收到的呼叫次数只取非负整数),也可以充满一个数值区间,或整个实数轴(如液体中悬浮的微粒沿某一方向的位移)。
随机试验结果的量的表示。例如掷一颗骰子出现的点数,电话交换台在一定时间内收到的呼叫次数,随机抽查的一个人的身高,悬浮在液体中的微粒沿某一方向的位移,等等,都是随机变量的实例。
参考资料来源:百度百科-随机变量
按照题干中的定义,在【1,3】上f(x)=0,包含在所谓的其他中,k可以选[1,3]上任意一个数,一个题目的答案可以有一个,两个或者这种无数个,因此不必追求一个独一无二的k的。
随机变量表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。
随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。
性质:
不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。
如分析测试中的测定值就是一个以概率取值的随机变量,被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。
随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性。