展开全部
x->0
tanx = x+(1/3)x^3 +o(x^3)
ln( 1+ tanx)
=ln[ 1+x+(1/3)x^3 +o(x^3)]
= [x+(1/3)x^3] - (1/2)[x+(1/3)x^3]^2 +(1/3)[x+(1/3)x^3]^3 +o(x^3)
= [x+(1/3)x^3] - (1/2)[x^2+o(x^3)] +(1/3)[x^3+o(x^3)] +o(x^3)
=x -(1/2)x^2 +(2/3)x^3 +o(x^3)
sinx = x-(1/6)x^3 +o(x^3)
ln( 1+ sinx)
=ln[ 1+x-(1/6)x^3 +o(x^3)]
= [x-(1/6)x^3] - (1/2)[x-(1/6)x^3]^2 +(1/3)[x-(1/6)x^3]^3 +o(x^3)
= [x-(1/6)x^3] - (1/2)[x^2+o(x^3)] +(1/3)[x^3+o(x^3)] +o(x^3)
=x -(1/2)x^2 +(1/6)x^3 +o(x^3)
ln[(1+tanx)/(1+sinx)]
=ln(1+tanx) -ln(1+sinx)
=[x -(1/2)x^2 +(2/3)x^3 +o(x^3) ] -[x -(1/2)x^2 +(1/6)x^3 +o(x^3)]
=(1/2)x^3 +o(x^3)
lim(x->0) [(1+tanx)/(1+sinx)]^(1/x^3)
=lim(x->0) e^{ ln[(1+tanx)/(1+sinx)] /x^3 }
=lim(x->0) e^[ (1/2)x^3 /x^3 ]
=e^(1/2)
tanx = x+(1/3)x^3 +o(x^3)
ln( 1+ tanx)
=ln[ 1+x+(1/3)x^3 +o(x^3)]
= [x+(1/3)x^3] - (1/2)[x+(1/3)x^3]^2 +(1/3)[x+(1/3)x^3]^3 +o(x^3)
= [x+(1/3)x^3] - (1/2)[x^2+o(x^3)] +(1/3)[x^3+o(x^3)] +o(x^3)
=x -(1/2)x^2 +(2/3)x^3 +o(x^3)
sinx = x-(1/6)x^3 +o(x^3)
ln( 1+ sinx)
=ln[ 1+x-(1/6)x^3 +o(x^3)]
= [x-(1/6)x^3] - (1/2)[x-(1/6)x^3]^2 +(1/3)[x-(1/6)x^3]^3 +o(x^3)
= [x-(1/6)x^3] - (1/2)[x^2+o(x^3)] +(1/3)[x^3+o(x^3)] +o(x^3)
=x -(1/2)x^2 +(1/6)x^3 +o(x^3)
ln[(1+tanx)/(1+sinx)]
=ln(1+tanx) -ln(1+sinx)
=[x -(1/2)x^2 +(2/3)x^3 +o(x^3) ] -[x -(1/2)x^2 +(1/6)x^3 +o(x^3)]
=(1/2)x^3 +o(x^3)
lim(x->0) [(1+tanx)/(1+sinx)]^(1/x^3)
=lim(x->0) e^{ ln[(1+tanx)/(1+sinx)] /x^3 }
=lim(x->0) e^[ (1/2)x^3 /x^3 ]
=e^(1/2)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询