三角函数2倍角的 常用转化公式

 我来答
锺离连枝达娴
2019-08-25 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.3万
采纳率:34%
帮助的人:876万
展开全部
在二角和的公式中令两个角相等(b=a),就得到二倍角公式.
sin(a+b)=sinacosb+cosasinb
--->sin2a=2sinacosa
cos(a+b)=cosacosb-sinasinb
--->cos2a=(cosa)^2-(sina)^2=(1-(sina)^2-(sina)^2=1-2(sina)^2=2(cosa)^2-1.
tan(a+b)=(tana+tanb)/(1-tanatanb)
--->tan2a=2tana/[1-(tana)^2]
余弦的二倍角公式中,解方程就得到半角公式.
cosx=1-2[sin(x/2)]^2
--->sin(x/2)=+'-√[(1-cosx)/2]
符号由(x/2)的象限决定,下同.
cosx=2[cos(x/2)]^2
--->cos(x/2)=+'-√[1+cosx)/2]
两式的的两边分别相除,得到
tan(x/2)=+'-√[(1-cosx)/(1+cosx)].
又tan(x/2)=sin(x/2)/cos(x/2)
=2[sin(x/2)]^2/[2sin(x/2)cos(x/2)]
=(1-cosx)/sinx
=.........
=sinx/(1+cosx).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式