设A为实对称矩阵,且A的平方等于0.证明:A等于0.
2个回答
展开全部
设矩阵a是n×n阶实对称矩阵,且a的平方等于0,证明a=0
设a=[aij],其中i,j=1,2,。。。,n
令c=a^2=a×a,依据矩阵乘法法则,c中主对角线上元素cii就是a的第i行和a第i列元素对应相乘再相加所得。其中i=1,2,。。。,n
cii=ai1*ai1+ai2*ai2+...+ain*ain
=(ai1)^2+(ai2)^2+...+(ain)^2
(因为a对称,所以第i行元素和第j列元素是对应相等的)
而cii=0
(c为零矩阵,其中每孩范粉既莠焕疯唯弗沥一个元素当然也是零)
所以
0=(ai1)^2+(ai2)^2+...+(ain)^2
而a是实矩阵,其元素均为实数,
所以aij=0
(j=1,2,...,n),即a中每一个元素均为数字零
因此a=零矩阵
设a=[aij],其中i,j=1,2,。。。,n
令c=a^2=a×a,依据矩阵乘法法则,c中主对角线上元素cii就是a的第i行和a第i列元素对应相乘再相加所得。其中i=1,2,。。。,n
cii=ai1*ai1+ai2*ai2+...+ain*ain
=(ai1)^2+(ai2)^2+...+(ain)^2
(因为a对称,所以第i行元素和第j列元素是对应相等的)
而cii=0
(c为零矩阵,其中每孩范粉既莠焕疯唯弗沥一个元素当然也是零)
所以
0=(ai1)^2+(ai2)^2+...+(ain)^2
而a是实矩阵,其元素均为实数,
所以aij=0
(j=1,2,...,n),即a中每一个元素均为数字零
因此a=零矩阵
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询