0.9999999*****无限循环小数化成分数是多少?
0.9999999*****无限循环小数化成分数是多少?0.333333******化成分数是三分之一0.66666******化成分数是三分之二0.99999*****...
0.9999999*****无限循环小数化成分数是多少?
0.333333******化成分数是三分之一
0.66666******化成分数是三分之二
0.99999******等于一吗?
0.99999******如不等于一,用分数表示是多少?
0.99999******如等于一,怎样证明??? 展开
0.333333******化成分数是三分之一
0.66666******化成分数是三分之二
0.99999******等于一吗?
0.99999******如不等于一,用分数表示是多少?
0.99999******如等于一,怎样证明??? 展开
展开全部
0.9999999...无限循环小数化成分数是9/9。
解:根据小数化分数的规则可得,
对于循环小数化分数,该循环小数的循环节有几位,分母就有几个9。
所以0.9999...=9/9。
而且通过其他计算方法可知,
0.999...=0.333...+0.333...+0.333...
=1/3+1/3+1/3
=1=9/9
所以0.9999999...无限循环小数化成分数是9/9。
扩展资料:
1、分数化小数的方法
(1)分母是2、4、8等,利用分数的基本性质,分母和分子同时乘以5、25、125等数,分母就转成10、100、1000的数,直接换成小数。
(2)利用分数与除法的关系:分子/分母=小数
2、小数化分数的方法
(1)有限小数化分数,小数部分有几个零就有几位分母。
(2)如是纯循环小数,循环节有几位,分母就有几个9。
(3)如是混循环小数,循环节有几位,分母就有几个9;不循环的数字有几位,9后面就有几个0,分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。
参考资料来源:百度百科-分数
展开全部
0.9999……9无限循环的小数严格意义讲不能化分数
但可以用任意分母值不为1的,且分子与分母相同的所有分数减未知变量m理解。
0.9999……9无限循环是一个争议数。但我们引用实际应用可以理解该数。
假设存在一个绝对10米的材料,我们把它平均分成10份。放回一起理论还是10米
即10/10,理论为10米,1/10理论为1米
但实际每份(1/10)的实际值绝对不为1米,即0.999……无限可能。
假设保留绝对1米,那么只有9份足量。
剩余的一份因分割工艺无限接近1米但绝对不为1米。
那么问题就回来了,10/10不再等于原来的10米。1/10不再等于1。这个差量是多少呢?
答:不可知。即未知变量m。
可能差9毫米,9微米,9纳米,甚至9个原子直径,9个夸克直径,或者9个电子的直径。
那么怎么表示和理解呢?
2/2=0.9999……9无限循环
即分割损失,造成余量不足。其综合损失量与分割次数成正比例。
迫使均分时无限考虑变量因素而不整除,使运算值更接近实际值的计算方式。
如取值方式中对0.98等于0.9(不足就舍)和等于1(4舍5入)的两种不同取值。
0.9999……9无限循环,更类似于不足就舍的的取值思维。就是说这个计算要求必须有余数不允许出现正好分完,但因为没有明确取值数位而无限计算下去。
我们放在应用中理解,绝对总量1,被绝对平分成10份,因分配过程不可知损耗发生变量m。造成10/10不等于1总量而无限接近总量1。1/10的损耗又小到不可计。
即,总量1的两个计算式为
1/10≈0.1
0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1≈0.999……
同理,9/9,8/8,10000/10000
除分1份以外,所有分后的和,都不为原总量量1,所有均分量不为理论量。总量和不为原总量,又因为其无法有效表达分割次数而无法化分数。
即
2/2=0.9999……余(2*n)/2(n为对应观察位的小数值)
3/3=0.9999……余(3*n)/3(n为对应观察位的小数值)
4/4=0.9999……余(4*n)/4(n为对应观察位的小数值)
5/5=0.9999……余(5*n)/5(n为对应观察位的小数值)
……
皆可为0.999……9无限循环的分数式。
本人理解为
所有分割后再和算,分母值不为1,但分子于分母相同的分数,使用舍余计数法表达时皆为0.9999……9无限循环。使用科学计数法表达时皆为1。
其表达的意义应当区别自然数1。
即,区别自然数1(1/1)和2/2,……等设量为1的表达形式。
个人认为
严格讲其(0.9999……9无限循环)不属于科学计数的有理数。或者说不属于科学计数的范围。因为其考虑变量却不明确变量不存在运算意义。
依据如下:
1,其不符合科学计数中有理数集合的普遍定义(可化分)。
2,其不能有效的标注于坐标(可标识)。
3,其没有明确意义的分数化定位。
4,其可以是任何不为1且分母与分子相同的分子式解释,其与有理数1存在相同分子式却存在不同小数式。违背科学计数意义。
5,其不符合有理数可四则运算的特性。
6,其不存在,在科学计数中有效运算的意义。
其
7,其违背两个有理数间必然存在无数有理数的定义
8,其强制运算的数学意义在于是对未知量的考虑不属于科学计数的运算范围
总结:因其无限循环性归其为科学计数的有理数缺乏足够依据,且严重违背其它定义。除是无限循环性,不存在于其它有理数具有同理性质的特点。
提示:
其与其它分数的余量不尽而发生无限循环不同。
其为实际余量不足(变量不明)强制借位运算引发的无限循环。
其强制运算的成因是未知变量,不在科学计算的验算量中。
现状:
目前为止该数是否属于有理数还存在争议。目前中学实际教学还将其归为有理数。
验算式
设变量为m(且变量m小于可运数位一位,且不为分母公倍数)
则9/9实际为(9-m)/9
其验算式可参考9/9等于,0.9每份,9份,大约余0.9的方式无限计算。
同理3/3等于0.9每份,3份,大约余0.3的方式无限计算。
理论:分割损失使总量不足;分配切割损量,使均分配量不足而发生的借量分配,形成无限循环结果。
总结:
其不能理解为等于自然数1。就像我们计算中圆周率取值3.1415926而不是圆周率就等于3.1415926
其分数式可以为所有分母值不为1,且分子与分母相同的分数。
其可以是所有分母不为1,但分子分母相同的分数统一的小数表达方式(代表总量1),也就是我们经常使用的设总量为1。
即1/1=1;
2/2=0.9999……余(2*n)/2(n为对应观察位的小数值)
……
特别注释:
2/2=0.9999……余(2*n)/2
与
2/2=1
不为同理等式,其计数方式不为同理式
但可以用任意分母值不为1的,且分子与分母相同的所有分数减未知变量m理解。
0.9999……9无限循环是一个争议数。但我们引用实际应用可以理解该数。
假设存在一个绝对10米的材料,我们把它平均分成10份。放回一起理论还是10米
即10/10,理论为10米,1/10理论为1米
但实际每份(1/10)的实际值绝对不为1米,即0.999……无限可能。
假设保留绝对1米,那么只有9份足量。
剩余的一份因分割工艺无限接近1米但绝对不为1米。
那么问题就回来了,10/10不再等于原来的10米。1/10不再等于1。这个差量是多少呢?
答:不可知。即未知变量m。
可能差9毫米,9微米,9纳米,甚至9个原子直径,9个夸克直径,或者9个电子的直径。
那么怎么表示和理解呢?
2/2=0.9999……9无限循环
即分割损失,造成余量不足。其综合损失量与分割次数成正比例。
迫使均分时无限考虑变量因素而不整除,使运算值更接近实际值的计算方式。
如取值方式中对0.98等于0.9(不足就舍)和等于1(4舍5入)的两种不同取值。
0.9999……9无限循环,更类似于不足就舍的的取值思维。就是说这个计算要求必须有余数不允许出现正好分完,但因为没有明确取值数位而无限计算下去。
我们放在应用中理解,绝对总量1,被绝对平分成10份,因分配过程不可知损耗发生变量m。造成10/10不等于1总量而无限接近总量1。1/10的损耗又小到不可计。
即,总量1的两个计算式为
1/10≈0.1
0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1≈0.999……
同理,9/9,8/8,10000/10000
除分1份以外,所有分后的和,都不为原总量量1,所有均分量不为理论量。总量和不为原总量,又因为其无法有效表达分割次数而无法化分数。
即
2/2=0.9999……余(2*n)/2(n为对应观察位的小数值)
3/3=0.9999……余(3*n)/3(n为对应观察位的小数值)
4/4=0.9999……余(4*n)/4(n为对应观察位的小数值)
5/5=0.9999……余(5*n)/5(n为对应观察位的小数值)
……
皆可为0.999……9无限循环的分数式。
本人理解为
所有分割后再和算,分母值不为1,但分子于分母相同的分数,使用舍余计数法表达时皆为0.9999……9无限循环。使用科学计数法表达时皆为1。
其表达的意义应当区别自然数1。
即,区别自然数1(1/1)和2/2,……等设量为1的表达形式。
个人认为
严格讲其(0.9999……9无限循环)不属于科学计数的有理数。或者说不属于科学计数的范围。因为其考虑变量却不明确变量不存在运算意义。
依据如下:
1,其不符合科学计数中有理数集合的普遍定义(可化分)。
2,其不能有效的标注于坐标(可标识)。
3,其没有明确意义的分数化定位。
4,其可以是任何不为1且分母与分子相同的分子式解释,其与有理数1存在相同分子式却存在不同小数式。违背科学计数意义。
5,其不符合有理数可四则运算的特性。
6,其不存在,在科学计数中有效运算的意义。
其
7,其违背两个有理数间必然存在无数有理数的定义
8,其强制运算的数学意义在于是对未知量的考虑不属于科学计数的运算范围
总结:因其无限循环性归其为科学计数的有理数缺乏足够依据,且严重违背其它定义。除是无限循环性,不存在于其它有理数具有同理性质的特点。
提示:
其与其它分数的余量不尽而发生无限循环不同。
其为实际余量不足(变量不明)强制借位运算引发的无限循环。
其强制运算的成因是未知变量,不在科学计算的验算量中。
现状:
目前为止该数是否属于有理数还存在争议。目前中学实际教学还将其归为有理数。
验算式
设变量为m(且变量m小于可运数位一位,且不为分母公倍数)
则9/9实际为(9-m)/9
其验算式可参考9/9等于,0.9每份,9份,大约余0.9的方式无限计算。
同理3/3等于0.9每份,3份,大约余0.3的方式无限计算。
理论:分割损失使总量不足;分配切割损量,使均分配量不足而发生的借量分配,形成无限循环结果。
总结:
其不能理解为等于自然数1。就像我们计算中圆周率取值3.1415926而不是圆周率就等于3.1415926
其分数式可以为所有分母值不为1,且分子与分母相同的分数。
其可以是所有分母不为1,但分子分母相同的分数统一的小数表达方式(代表总量1),也就是我们经常使用的设总量为1。
即1/1=1;
2/2=0.9999……余(2*n)/2(n为对应观察位的小数值)
……
特别注释:
2/2=0.9999……余(2*n)/2
与
2/2=1
不为同理等式,其计数方式不为同理式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-07-07
展开全部
将0.9999999无限个九写成分数!这里涉及到一个“极限”的问题!0.99999999999999999999999999999的极限到1了,无法写成分数的形式!
建议你去看看高中的课本!
========
举两个例子说明一下
一、0.999999……=1?
谁都知道1/3=0.333333……,而两边同时乘以3就得到1=0.999999……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。
二、“无理数”算是什么数?
我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。
结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。
类似的根源还在物理中(实际上,从科学发展的历程来看,物理可能才是真正的发展动力),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出。
真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师,这对我们今天中学教师界而言,不能不说是意味深长的。
最后再唠叨一句,所谓“定义”极限,本质上就是给“无限接近”提供一个合乎逻辑的判定方法,和一个规范的描述格式。这样,我们的各种说法,诸如“我们可以根据需要写出根号2的任一接近程度的近似值”,就有了建立在坚实的逻辑基础之上的意义。(此前,它们更多的只是被人“本能的”承认而已。)
建议你去看看高中的课本!
========
举两个例子说明一下
一、0.999999……=1?
谁都知道1/3=0.333333……,而两边同时乘以3就得到1=0.999999……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。
二、“无理数”算是什么数?
我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。
结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。
类似的根源还在物理中(实际上,从科学发展的历程来看,物理可能才是真正的发展动力),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出。
真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师,这对我们今天中学教师界而言,不能不说是意味深长的。
最后再唠叨一句,所谓“定义”极限,本质上就是给“无限接近”提供一个合乎逻辑的判定方法,和一个规范的描述格式。这样,我们的各种说法,诸如“我们可以根据需要写出根号2的任一接近程度的近似值”,就有了建立在坚实的逻辑基础之上的意义。(此前,它们更多的只是被人“本能的”承认而已。)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-07-07
展开全部
当然是用计算机的方便,笔算的方法也有,但是实在是太繁琐了
首先明确一点 无限不循环小数 是不能转化成分数的 那么无限循环小数又是如何化分数的呢?由于它的小数部分位数是无限的,显然不可能写成十分之几、百分之几、千分之几……的数。其实,循环小数化分数难就难在无限的小数位数。所以我就从这里入手,想办法“剪掉”无限循环小数的“大尾巴”。策略就是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“大尾巴”完全相同,然后这两个数相减,“大尾巴”不就剪掉了吗!我们来看两个例子:
⑴ 把0.4747……和0.33……化成分数。
等等既然我们讨论到无限这个概念 那么我们就应该明确一点 既然都是 无限循环小数 那么他们在循环节中小数点后 数的个数就没有区别的 统一的认为是无限个
例如:
想1: 0.4747……×100=47.4747……
0.4747……×100-0.4747……=47.4747……-0.4747……
(100-1)×0.4747……=47
即99×0.4747…… =47
那么 0.4747……=47/99
想2: 0.33……×10=3.33……
0.33……×10-0.33……=3.33…-0.33……
(10-1) ×0.33……=3
即9×0.33……=3
那么0.33……=3/9=1/3
由此可见, 纯循环小数化分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。
⑵把0.4777……和0.325656……化成分数。
想1:0.4777……×10=4.777……①
0.4777……×100=47.77……②
用②-①即得:
0.4777……×90=47-4
所以, 0.4777……=43/90
想2:0.325656……×100=32.5656……①
0.325656……×10000=3256.56……②
用②-①即得:
0.325656……×9900=3256.5656……-32.5656……
0.325656……×9900=3256-32
所以, 0.325656……=3224/9900
首先明确一点 无限不循环小数 是不能转化成分数的 那么无限循环小数又是如何化分数的呢?由于它的小数部分位数是无限的,显然不可能写成十分之几、百分之几、千分之几……的数。其实,循环小数化分数难就难在无限的小数位数。所以我就从这里入手,想办法“剪掉”无限循环小数的“大尾巴”。策略就是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“大尾巴”完全相同,然后这两个数相减,“大尾巴”不就剪掉了吗!我们来看两个例子:
⑴ 把0.4747……和0.33……化成分数。
等等既然我们讨论到无限这个概念 那么我们就应该明确一点 既然都是 无限循环小数 那么他们在循环节中小数点后 数的个数就没有区别的 统一的认为是无限个
例如:
想1: 0.4747……×100=47.4747……
0.4747……×100-0.4747……=47.4747……-0.4747……
(100-1)×0.4747……=47
即99×0.4747…… =47
那么 0.4747……=47/99
想2: 0.33……×10=3.33……
0.33……×10-0.33……=3.33…-0.33……
(10-1) ×0.33……=3
即9×0.33……=3
那么0.33……=3/9=1/3
由此可见, 纯循环小数化分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。
⑵把0.4777……和0.325656……化成分数。
想1:0.4777……×10=4.777……①
0.4777……×100=47.77……②
用②-①即得:
0.4777……×90=47-4
所以, 0.4777……=43/90
想2:0.325656……×100=32.5656……①
0.325656……×10000=3256.56……②
用②-①即得:
0.325656……×9900=3256.5656……-32.5656……
0.325656……×9900=3256-32
所以, 0.325656……=3224/9900
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-07-07
展开全部
可以等于1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询