已知abc=1,求a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)的值
1个回答
展开全部
解,用整体法:
a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)
等价于1/(b+1+bc)+1/(c+1+ac)+1/(a+1+ab)(分子,分母同除分子)
等价于ac/(1+ac+c)+ab/(1+ab+a)+bc/(1+cb+b)(分子,分母同乘分母能构成abc的项的差那个数)
3*[a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)]
=[a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)]+[1/(b+1+bc)+1/(c+1+ac)+1/(a+1+ab)]+[ac/(1+ac+c)+ab/(1+ab+a)+bc/(1+cb+b)]
=3
所以:a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)=1
a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)
等价于1/(b+1+bc)+1/(c+1+ac)+1/(a+1+ab)(分子,分母同除分子)
等价于ac/(1+ac+c)+ab/(1+ab+a)+bc/(1+cb+b)(分子,分母同乘分母能构成abc的项的差那个数)
3*[a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)]
=[a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)]+[1/(b+1+bc)+1/(c+1+ac)+1/(a+1+ab)]+[ac/(1+ac+c)+ab/(1+ab+a)+bc/(1+cb+b)]
=3
所以:a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询