直线的两点式方程如何转化为一般式

 我来答
闪玉花言巳
2019-08-18 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:31%
帮助的人:811万
展开全部
若直线过点p(x0,y0),方向向量v=(v1,v2)
则直线的点向式方程可写为:
v2*(x-x0)
-
v1*(y-y0)=0
上式去括号得:
v2*x-
v2*x0
-
v1*y
+
v1*y0=0
即v2*x
-
v1*y
+
v1*y0
-
v2*x0
=0
这就是所求的直线的一般式方程,其中法向量n=(v2,-v1)
.
若已知直线的一般式方程为ax+by+c=0且过点p(x0,y0)
可知直线的法向量n=(a,b)
那么直线的一个方向向量v=(-b,a)
所以直线的点向式方程可写为:a*(x-x0)-(-b)*(y-y0)=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式