三次方程的解法公式和三根与系数的关系式(又称韦达定理)分别是什么
1个回答
推荐于2019-01-10
展开全部
解法公式
一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。
重根判别式:A=b^2-3ac;B=bc-9ad;C=c^2-3bd,
总判别式:Δ=B^2-4AC。
当A=B=0时①:
X1=X2=X3=-b/(3a)=-c/b=-3d/c。
当Δ=B^2-4AC>0时②:
X1=(-b-(Y1)^(1/3)-(Y2)^(1/3))/(3a);
X2,3=(-2b+(Y1)^(1/3)+(Y2)^(1/3))/(6a)±i3^(1/2)((Y1)^(1/3)-(Y2)^(1/3))/(6a), 其中Y1,2=Ab+3a(-B±(B^2-4AC)^(1/2))/2,i^2=-1。
当Δ=B^2-4AC=0时③:
X1=-b/a+K; X2=X3=-K/2, 其中K=B/A,(A≠0)。
当Δ=B^2-4AC<0时④:
X1=(-b-2A^(1/2)cos(θ/3))/(3a);
X2,3=(-b+A^(1/2)(cos(θ/3)±3^(1/2)sin(θ/3)))/(3a), 其中θ=arccosT,T=(2Ab-3aB)/(2A^(3/2)),(A>0,-1<T<1)。
三根与系数的关系式(又称韦达定理)
X1·X2·X3=—d/a;
X1·X2+X1·X3+X2·X3=c/a;
X1+X2+X3=—b/a。
一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。
重根判别式:A=b^2-3ac;B=bc-9ad;C=c^2-3bd,
总判别式:Δ=B^2-4AC。
当A=B=0时①:
X1=X2=X3=-b/(3a)=-c/b=-3d/c。
当Δ=B^2-4AC>0时②:
X1=(-b-(Y1)^(1/3)-(Y2)^(1/3))/(3a);
X2,3=(-2b+(Y1)^(1/3)+(Y2)^(1/3))/(6a)±i3^(1/2)((Y1)^(1/3)-(Y2)^(1/3))/(6a), 其中Y1,2=Ab+3a(-B±(B^2-4AC)^(1/2))/2,i^2=-1。
当Δ=B^2-4AC=0时③:
X1=-b/a+K; X2=X3=-K/2, 其中K=B/A,(A≠0)。
当Δ=B^2-4AC<0时④:
X1=(-b-2A^(1/2)cos(θ/3))/(3a);
X2,3=(-b+A^(1/2)(cos(θ/3)±3^(1/2)sin(θ/3)))/(3a), 其中θ=arccosT,T=(2Ab-3aB)/(2A^(3/2)),(A>0,-1<T<1)。
三根与系数的关系式(又称韦达定理)
X1·X2·X3=—d/a;
X1·X2+X1·X3+X2·X3=c/a;
X1+X2+X3=—b/a。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询