2个回答
展开全部
bn = b1+(n-1)d
Sn = a1=a2+...+an
bn =nSn+(n+2)an
n=1
b1= a1+3a1
= 4
n= 2
b2= 2(a1+a2) + 4a2
= 2(2)+4
=8
d= b2-b1= 4
bn = b1+(n-1)d = 4 +(n-1)4 = 4n
bn =nSn+(n+2)an
4n = nSn +(n+2)an
= nSn +(n+2)[Sn-S(n-1)]
(2n+2)Sn = (n+2)S(n-1) + 4n
2Sn/(n+2) = S(n-1)/(n+1) + 4n/[(n+1)(n+2)]
2[Sn/(n+2) - 4/(n+2)] = S(n-1)/(n+1) - 4/(n+1)
[(Sn/(n+2) - 4/(n+2)]/[ S(n-1)/(n+1) - 4/(n+1)] = 1/2
[Sn/(n+2) - 4/(n+2)]/[ (S1)/3 - 4/3] = (1/2)^(n-1)
Sn/(n+2) - 4/(n+2) = - (1/2)^(n-1)
Sn = [4/(n+2) -(1/2)^(n-1)] (n+2)
= 4 - (n+2)(1/2)^(n-1)
an = Sn-S(n-1)
=-(n+2) (1/2)^(n-1) + (n+1) (1/2)^(n-2)
=-(1/2)^(n-1). [ n+2 - 2(n+1)]
= n.(1/2)^(n-1)
Sn = a1=a2+...+an
bn =nSn+(n+2)an
n=1
b1= a1+3a1
= 4
n= 2
b2= 2(a1+a2) + 4a2
= 2(2)+4
=8
d= b2-b1= 4
bn = b1+(n-1)d = 4 +(n-1)4 = 4n
bn =nSn+(n+2)an
4n = nSn +(n+2)an
= nSn +(n+2)[Sn-S(n-1)]
(2n+2)Sn = (n+2)S(n-1) + 4n
2Sn/(n+2) = S(n-1)/(n+1) + 4n/[(n+1)(n+2)]
2[Sn/(n+2) - 4/(n+2)] = S(n-1)/(n+1) - 4/(n+1)
[(Sn/(n+2) - 4/(n+2)]/[ S(n-1)/(n+1) - 4/(n+1)] = 1/2
[Sn/(n+2) - 4/(n+2)]/[ (S1)/3 - 4/3] = (1/2)^(n-1)
Sn/(n+2) - 4/(n+2) = - (1/2)^(n-1)
Sn = [4/(n+2) -(1/2)^(n-1)] (n+2)
= 4 - (n+2)(1/2)^(n-1)
an = Sn-S(n-1)
=-(n+2) (1/2)^(n-1) + (n+1) (1/2)^(n-2)
=-(1/2)^(n-1). [ n+2 - 2(n+1)]
= n.(1/2)^(n-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询