求高一三角函数的一道题解法
f(x)=1/2cos平方x+根号下三/2sinxcosx+1x属于R(1)求fx的最小正周期(2)函数在{派/12,派/4}上最大值最小值,并求出取得最大值最小值时自变...
f(x)=1/2cos平方x+根号下三/2sinxcosx+1 x属于R ( 1)求fx的最小正周期 ( 2)函数在{派/12,派/4}上最大值最小值,并求出取得最大值最小值时自变量x值 3,解不等式f(x)三次方>1/2
展开
展开全部
f(x)=1/2cos平方x+根号下三/2sinxcosx+1,x属于R,
(1)求fx的最小正周期
(2)函数在{派/12,派/4}上最大值最小值,并求出取得最大值最小值时自变量x值
(3)解不等式f(x)三次方>1/2
(1)解析:∵f(x)=1/2(cosx)^2+√3/2sinxcosx+1=1/4(cos2x+1)+√3/4sin2x+1
=1/2cos(2x-π/3)+5/4
∴fx的最小正周期为π
(2)解析:最大值点:2x-π/3=2kπ==>x=kπ+π/6
最小值点:2x-π/3=2kπ+π==>x=kπ+2π/3
∵区间[派/12,派/4]
F(π/12)=1/2cos(π/6-π/3)+5/4=√3/4+5/4
F(π/4)=1/2cos(π/2-π/3)+5/4=√3/4+5/4
∴当x=π/6时,取最大值7/4;当x=π/12或x=π/4时,取最小值√3/4+5/4;
(3)解析:设g(x)=(f(x))^3
令g’(x)=3(f(x))^2*f’(x)=0
∵f(x)>0
∴f’(x)=-sin(2x-π/3)=0
2x-π/3=2kπ==>x1=kπ+π/6
2x-π/3=2kπ+π==>x2=kπ+2π/3
f’’(x)=-2cos(2x-π/3)==> f’’(x1)<0,f’’(x2)>0
∴g(x)在x2处取极小值g(2π/3)=(f(2π/3))^3=(3/4)^3=27/64
∵(f(x))^3>1/2==>f(x)>(1/2)^(1/3)≈0.793701
令f(x)=0.793701
cos(2x-π/3)=2*0.793701-5/2=-0.912598
2x-π/3=2kπ+0.865927π==>2x=2kπ+π/3+π-0.13407288π
==>x=kπ+2π/3-0.13407288π/2
2x-π/3=2kπ+2π-0.865927π==>2x=2kπ+2π+π/3-π+0.13407288π
==>x=kπ+2π/3+0.13407288π/2
∴不等式的解为x∈(kπ-π/3+0.06703644π,kπ+2π/3-0.06703644π)
(1)求fx的最小正周期
(2)函数在{派/12,派/4}上最大值最小值,并求出取得最大值最小值时自变量x值
(3)解不等式f(x)三次方>1/2
(1)解析:∵f(x)=1/2(cosx)^2+√3/2sinxcosx+1=1/4(cos2x+1)+√3/4sin2x+1
=1/2cos(2x-π/3)+5/4
∴fx的最小正周期为π
(2)解析:最大值点:2x-π/3=2kπ==>x=kπ+π/6
最小值点:2x-π/3=2kπ+π==>x=kπ+2π/3
∵区间[派/12,派/4]
F(π/12)=1/2cos(π/6-π/3)+5/4=√3/4+5/4
F(π/4)=1/2cos(π/2-π/3)+5/4=√3/4+5/4
∴当x=π/6时,取最大值7/4;当x=π/12或x=π/4时,取最小值√3/4+5/4;
(3)解析:设g(x)=(f(x))^3
令g’(x)=3(f(x))^2*f’(x)=0
∵f(x)>0
∴f’(x)=-sin(2x-π/3)=0
2x-π/3=2kπ==>x1=kπ+π/6
2x-π/3=2kπ+π==>x2=kπ+2π/3
f’’(x)=-2cos(2x-π/3)==> f’’(x1)<0,f’’(x2)>0
∴g(x)在x2处取极小值g(2π/3)=(f(2π/3))^3=(3/4)^3=27/64
∵(f(x))^3>1/2==>f(x)>(1/2)^(1/3)≈0.793701
令f(x)=0.793701
cos(2x-π/3)=2*0.793701-5/2=-0.912598
2x-π/3=2kπ+0.865927π==>2x=2kπ+π/3+π-0.13407288π
==>x=kπ+2π/3-0.13407288π/2
2x-π/3=2kπ+2π-0.865927π==>2x=2kπ+2π+π/3-π+0.13407288π
==>x=kπ+2π/3+0.13407288π/2
∴不等式的解为x∈(kπ-π/3+0.06703644π,kπ+2π/3-0.06703644π)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询