函数的驻点一定是极值点对吗?原因是什么?
不正确,驻点处的导数为零可导函数极值点处导数为零,且要求该点两侧邻域内导数符号相反。
比如,y=x^3,在x=0处函数的导数为零,是驻点,但是x<0与x>0时导数符号相同,该点不是极值点。
当函数存在导数时,极值点一定是驻点,反之不一定正确。
例如:f(x)=x^3,x=0是函数的驻点(也是零点),但不是极值点,常常从函数的驻点中找极值点。
函数的极值点是函数的单调性发生变化的点,或是函数的局部极大值或极小值点。当函数存在导数时,函数的极值点是其导函数的变号零点。
例如:f(x)=x^2-1,x=0就是函数的f(x)的极小值点。或者说函数在x=0附近的函数值都比x=0时的函数值大。且x=1和x=-1是函数f(x)的零点。再如:g(x)=|x|,x=0是函数的极小值点,但不是函数的驻点。
扩展资料:
函数的平稳点的术语可能会与函数图的给定投影的临界点相混淆。
拐点是导数符号发生变化的点。拐点可以是相对最大值或相对最小值(也称为局部最小值和最大值)。如果函数是可微分的,那么拐点是一个固定点;
然而并不是所有的固定点都是拐点。如果函数是两次可微分的,则不转动点的固定点是水平拐点。例如,函数x3在x=0处有一个固定点,也是拐点,但不是转折点。
参考资料:百度百科-驻点
这个不正确。驻点处的导数为零,可导函数极值点处导数为零,且要求该点两侧邻域内导数符号相反。比如,y=x^3,在x=0处函数的导数为零,是驻点,但是x<0与x>0时导数符号相同,该点不是极值点。
若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。
扩展资料:
对于一维函数的图像,驻点的切线平行于x轴。对于二维函数的图像,驻点的切平面平行于xy平面。值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况)。
反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值。
参考资料来源:百度百科-驻点
参考资料来源:百度百科-极值点
判断方法有两种:1、该点临近的左右侧的导数的符号不同;2,该点二阶导数的符号
驻点和极值点的关系:1、驻点不一定是极值点,极值点也不一定是驻点;2、导函数的极值点是驻点。
说下我对驻点的意义理解(有助于形象化理解):
驻点是函数导数为0的点,也就是该点的切线水平。是两侧极可能发生函数导数符号变化的点,或者说是切线的斜率符号发生变化的点,也就是函数单调性可能发生转变的点。因而常用来划分函数单调的可能区间。
驻点可能是单调性发生变化的点,因而可能是极值点;
驻点两侧单调性不发生变化,不是极值点;
驻点两侧单调性发生变化,是极值点。(是驻点不是极值点的原因是
两侧单调性不发生变化。)
两侧单调性变化,而该点的导数不存在(如左右导数不相等)(但函数要在该点连续),也是极值点。(但不是驻点,这是
是极值点而不是驻点的原因)
驻点处的导数为零
可导函数极值点处导数为零,且要求该点两侧邻域内导数符号相反!
比如,y=x^3,在x=0处函数的导数为零,是驻点,但是x<0与x>0时导数符号相同,该点不是极值点!