求函数的一阶导数,二阶导数与n阶导数
1个回答
展开全部
h' = 100e^(100x) - 5sin5x + 3/(3x+2)
h'' = 100^2 e^(100x) - 5^2 cos5x - 3^2/(3x+2)^2
h''' = 100^3 e^(100x) + 5^3 sin5x + 3^3(2*1)/(3x+2)^3
h'''' = 100^4 e^(100x) + 5^4 cos5x - 3^4(3!)/(3x+2)^4
If n is even, then h^(n) = 100^n e^(100x) + (-1)^(n/2) 5^n cos5x - 3^n (n-1)!/(3x+2)^n
If n is odd, then h^(n) = 100^n e^(100x) + (-1)^((n+1)/2) 5^n sin5x + 3^n (n-1)!/(3x+2)^n
h'' = 100^2 e^(100x) - 5^2 cos5x - 3^2/(3x+2)^2
h''' = 100^3 e^(100x) + 5^3 sin5x + 3^3(2*1)/(3x+2)^3
h'''' = 100^4 e^(100x) + 5^4 cos5x - 3^4(3!)/(3x+2)^4
If n is even, then h^(n) = 100^n e^(100x) + (-1)^(n/2) 5^n cos5x - 3^n (n-1)!/(3x+2)^n
If n is odd, then h^(n) = 100^n e^(100x) + (-1)^((n+1)/2) 5^n sin5x + 3^n (n-1)!/(3x+2)^n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询