已知数列{a n }满足a 1 =1,a 2 =2,a n+2 = a n + a n+1 2 ,n∈N * .(1)令b n =
已知数列{an}满足a1=1,a2=2,an+2=an+an+12,n∈N*.(1)令bn=an+1-an,证明:{bn}是等比数列;(2)求{an}的通项公式....
已知数列{a n }满足a 1 =1,a 2 =2,a n+2 = a n + a n+1 2 ,n∈N * .(1)令b n =a n+1 -a n ,证明:{b n }是等比数列;(2)求{a n }的通项公式.
展开
1个回答
展开全部
(1)证b
1
=a
2
-a
1
=1,
当n≥2时,
b
n
=
a
n+1
-
a
n
=
a
n-1
+
a
n
2
-
a
n
=-
1
2
(
a
n
-
a
n-1
)=-
1
2
b
n-1,
所以{b
n
}是以1为首项,
-
1
2
为公比的等比数列.
(2)解由(1)知
b
n
=
a
n+1
-
a
n
=(-
1
2
)
n-1
,
当n≥2时,a
n
=a
1
+(a
2
-a
1
)+(a
3
-a
2
)++(a
n
-a
n-1
)=1+1+(-
1
2
)+…+
(-
1
2
)
n-2
=
1+
1-
(-
1
2
)
n-1
1-(-
1
2
)
=
1+
2
3
[1-(-
1
2
)
n-2
]
=
5
3
-
2
3
(-
1
2
)
n-1
,
当n=1时,
5
3
-
2
3
(-
1
2
)
1-1
=1=
a
1
.
所以
a
n
=
5
3
-
2
3
(-
1
2
)
n-1
(n∈
N
*
)
.
1
=a
2
-a
1
=1,
当n≥2时,
b
n
=
a
n+1
-
a
n
=
a
n-1
+
a
n
2
-
a
n
=-
1
2
(
a
n
-
a
n-1
)=-
1
2
b
n-1,
所以{b
n
}是以1为首项,
-
1
2
为公比的等比数列.
(2)解由(1)知
b
n
=
a
n+1
-
a
n
=(-
1
2
)
n-1
,
当n≥2时,a
n
=a
1
+(a
2
-a
1
)+(a
3
-a
2
)++(a
n
-a
n-1
)=1+1+(-
1
2
)+…+
(-
1
2
)
n-2
=
1+
1-
(-
1
2
)
n-1
1-(-
1
2
)
=
1+
2
3
[1-(-
1
2
)
n-2
]
=
5
3
-
2
3
(-
1
2
)
n-1
,
当n=1时,
5
3
-
2
3
(-
1
2
)
1-1
=1=
a
1
.
所以
a
n
=
5
3
-
2
3
(-
1
2
)
n-1
(n∈
N
*
)
.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询