1个回答
展开全部
函数极值点和驻点存在这样的关系。函数的极值点是在这点附近这一点所对应的函数值最大或者最小(注意是这个点附近)。那么,我们说存在极值点的情况有两类,一类是一阶导数为零的点(也就是我们所说的驻点),另一类是一阶导数不存在的点。但是,我们说这两类并不都是极值点,我们需要验算,验算的方法有好几类,不展开讲了。比如说y=x^3,该函数在x=0的时候起一阶导数为零,但是就不是极值点。你画下y=x^3,很容易看出。所以简单的说,驻点有可能是极值点,极值点有可能是驻点。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询