求极限:lim(x→0﹢∞)(1-√cosx)/(1-cos√x)
1个回答
展开全部
1-cost t²/2
lim(x→0+) (1-√cosx)/(1-cos√x)
1-cost t²/2
=lim(x→0+) (1-√cosx)/(x/2)
=lim(x→0+) (1-cosx)/[(x/2)(1+√cosx)]
=lim(x→0+) (1-cosx)/[(x/2)(1+√cosx)]
=lim(x→0+) (x²/2)/[(x/2)(1+√cosx)]
=lim(x→0+) x/(1+√cosx)
= 0/2
=0
lim(x→0+) (1-√cosx)/(1-cos√x)
1-cost t²/2
=lim(x→0+) (1-√cosx)/(x/2)
=lim(x→0+) (1-cosx)/[(x/2)(1+√cosx)]
=lim(x→0+) (1-cosx)/[(x/2)(1+√cosx)]
=lim(x→0+) (x²/2)/[(x/2)(1+√cosx)]
=lim(x→0+) x/(1+√cosx)
= 0/2
=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询