已知函数f(x)=1/2cos^2-√3sinxcosx-1/2sin^2x+1 x∈R
(1)求f(x)的最小正周期以及在区间【0,π/2】上的最大值和最小值(2)若f(x1)=9/5,x1∈[-π/6,π/6],求cos2x的值...
(1)求f(x)的最小正周期以及在区间【0,π/2】上的最大值和最小值
(2)若f(x1)=9/5,x1∈[-π/6,π/6],求cos2x的值 展开
(2)若f(x1)=9/5,x1∈[-π/6,π/6],求cos2x的值 展开
展开全部
(1)f(x)=(1/2)(cos^2x-sin^2x)-(√3/2)(2sinxcosx)+1
=1/2cos2x-(√3/2)*sin2x+1
=cos(2x+π/3)+1
最小正周期为π,区间上最大值3/2,最小值1/2。
(2)cos(2x1+π/3)+1=9/5 x1∈[-π/6,π/6]
则 (2x1+π/3)∈[0,2π/3]
所以: cos(2x1+π/3)=4/5 sin(2x1+π/3)=3/5
故: cos2x1=cos(2x1+π/3-π/3)=1/2*4/5+√3/2*3/5=(4+3√3)/10
=1/2cos2x-(√3/2)*sin2x+1
=cos(2x+π/3)+1
最小正周期为π,区间上最大值3/2,最小值1/2。
(2)cos(2x1+π/3)+1=9/5 x1∈[-π/6,π/6]
则 (2x1+π/3)∈[0,2π/3]
所以: cos(2x1+π/3)=4/5 sin(2x1+π/3)=3/5
故: cos2x1=cos(2x1+π/3-π/3)=1/2*4/5+√3/2*3/5=(4+3√3)/10
展开全部
f(x)=(1/2)(cosx)^2-3sinxcosx-(1/2)(sinx)^2 +1
==(1/2)[(cosx)^2-(sinx)^2]-(1/2)2sinxcosx -sin2x
=(1/2)(cos2x+sin2x)
=(√2/2)[cos2xcos(pi/4)+sin2xsin(pi/4)]
=(√2/2)cos(2x-pi/4)
1)周期T=2pi/2=pi
2)对称轴2x-pi/4=kpi--->x=kpi/2+pi/8
3)递减区间2kpi=<2x-pi/4=<2kpi+pi--->kpi+pi/8=<x=<kpi+5pi/8
递增区间2kpi+pi=<2x+pi/4=<2kpi--->kpi+5pi/8=<x=<kpi+9pi/8
(2)cos(2x1+π/3)+1=9/5 x1∈[-π/6,π/6]
so (2x1+π/3)∈[0,2π/3]
so cos(2x1+π/3)=4/5 sin(2x1+π/3)=3/5
so cos2x1=cos(2x1+π/3-π/3)=1/2*4/5+√3/2*3/5=(4+3√3)/10
不懂的欢迎追问,如有帮助请采纳,谢谢!
==(1/2)[(cosx)^2-(sinx)^2]-(1/2)2sinxcosx -sin2x
=(1/2)(cos2x+sin2x)
=(√2/2)[cos2xcos(pi/4)+sin2xsin(pi/4)]
=(√2/2)cos(2x-pi/4)
1)周期T=2pi/2=pi
2)对称轴2x-pi/4=kpi--->x=kpi/2+pi/8
3)递减区间2kpi=<2x-pi/4=<2kpi+pi--->kpi+pi/8=<x=<kpi+5pi/8
递增区间2kpi+pi=<2x+pi/4=<2kpi--->kpi+5pi/8=<x=<kpi+9pi/8
(2)cos(2x1+π/3)+1=9/5 x1∈[-π/6,π/6]
so (2x1+π/3)∈[0,2π/3]
so cos(2x1+π/3)=4/5 sin(2x1+π/3)=3/5
so cos2x1=cos(2x1+π/3-π/3)=1/2*4/5+√3/2*3/5=(4+3√3)/10
不懂的欢迎追问,如有帮助请采纳,谢谢!
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询