高二数学题,急!
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:喜爱打篮球不喜爱打篮球合计男生5女生10合计50已知在全部50人中随机抽取1人抽到喜...
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球
不喜爱打篮球
合计
男生
5
女生
10
合计
50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
3
5
.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望.
下面的临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n (ad-bc) 2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d) 展开
喜爱打篮球
不喜爱打篮球
合计
男生
5
女生
10
合计
50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
3
5
.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望.
下面的临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n (ad-bc) 2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d) 展开
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询