求一个齐次线性方程组使它的基础解系为

求基础解系求一个齐次线性方程,使它的基础解系为a1=(0,1,2,3)^T;a2=(3,2,1,0)^T.... 求基础解系
求一个齐次线性方程,使它的基础解系为a1=(0,1,2,3)^T ; a2=(3,2,1,0)^T.
展开
 我来答
纳为隽莲
2020-06-10 · TA获得超过1131个赞
知道小有建树答主
回答量:1307
采纳率:100%
帮助的人:5.6万
展开全部
齐次线性方程组AX=0的基础解系为a1=(0,1,2,3)^T,a2=(3,2,1,0)^T
即a1=(0,1,2,3)^T,a2=(3,2,1,0)^T是齐次线性方程组AX=0的两个特解
设A=(A1 A2)^T,其中A1,A2为4维列向量,A为2*4阶矩阵
则(A1 A2)^T * (a1 a2) = 0
等式两边同时转置得
(a1 a2)^T * (A1 A2) = 0
问题转化为求解新齐次线性方程组的基础解系
增广矩阵
0 1 2 3 0
3 2 1 0 0
初等行变换
1 0 -1 -2 0
0 1 2 3 0
所以新齐次线性方程组的基础解系为A1=(1,-2,1,0)^T,A2=(2,-3,0,1)^T
所以所求的齐次线性方程组AX=0为
x1-2x2+x3=0
2x1-3x2+x4=0
原理:
ξ是齐次线性方程组的解 的充要条件是 ξ与系数矩阵的行向量正交
所以只要寻找与a1,a2都正交的向量A1,A2,即可构成所求齐次线性方程组的系数矩阵
富港检测技术(东莞)有限公司_
2024-04-02 广告
Ax = 0;如果A满秩,有唯一解,即零解;如果A不满秩,就有无数解,要求基础解系;求基础解系,比如A的秩是m,x是n维向量,就要选取 n-m个向量作为自由变元;齐次线性方程组的解集的极大线性无关组称为该齐次线性方程组的基础解系。基础解系是... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式