4个回答
展开全部
通项公式为An=1/n(n+1)(n+2)
=[1/n(n+1)-1/(n+1)(n+2)]/2
所以Sn=[1/1*2-1/2*3]/2+
[1/2*3-1/3*4]/2+[1/3*4-1/4*5]/2+
……+[1/(n-1)*n-1/n*(n+1)]/2+
[1/n(n+1)-1/(n+1)(n+2)]/2
=[1/1*2-1/(n+1)(n+2)]/2
=1/4-1/[2(n+1)(n+2)]
=[1/n(n+1)-1/(n+1)(n+2)]/2
所以Sn=[1/1*2-1/2*3]/2+
[1/2*3-1/3*4]/2+[1/3*4-1/4*5]/2+
……+[1/(n-1)*n-1/n*(n+1)]/2+
[1/n(n+1)-1/(n+1)(n+2)]/2
=[1/1*2-1/(n+1)(n+2)]/2
=1/4-1/[2(n+1)(n+2)]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/n(n+1)(n+2)=0.5*(n+2-n)/n(n+1)(n+2)=0.5*[1/n(n+1)-1/(n+1)(n+2)]=0.5*[1/n-1/(n+1)-1/(n+1)+1/(n+2)]
就这的往下写,中间就消掉好多项了。裂项相消的思想。
就这的往下写,中间就消掉好多项了。裂项相消的思想。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/n(n+1)(n+2)
=[2/n(n+2)]*1/{2(n+1)]
=[(2+n-n)/n(n+2)]*1/{2(n+1)]
=1/[2(n+1)]*[1/n-1/(n+2)]
=(1/2)[1/n(n+1)-1/(n+1)(n+2)]
所以Sn=(1/2)*{(1/1*2-1/2*3)+(1/2*3-1/3*4)+……+[1/n(n+1)-1/(n+1)(n+2)]}
=(1/2)[1/1*2-1/(n+1)(n+2)]
=(n^2+3n)/[4(n+1)(n+2)]
=[2/n(n+2)]*1/{2(n+1)]
=[(2+n-n)/n(n+2)]*1/{2(n+1)]
=1/[2(n+1)]*[1/n-1/(n+2)]
=(1/2)[1/n(n+1)-1/(n+1)(n+2)]
所以Sn=(1/2)*{(1/1*2-1/2*3)+(1/2*3-1/3*4)+……+[1/n(n+1)-1/(n+1)(n+2)]}
=(1/2)[1/1*2-1/(n+1)(n+2)]
=(n^2+3n)/[4(n+1)(n+2)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/(1×2×3)+1/(2×3×4)+1/(3×4×5)……1/[n×(n+1)×(n+2)
=(1-1/(n+2)
=(n+1)/(n+2)
=(1-1/(n+2)
=(n+1)/(n+2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询