高一数学必修二立体几何证明题怎么分析?证明时有什么固定模式么?
公理定理有很多,背都背不住,有时候解题时还不知道用哪个。求解:1)证明面面平行,垂直2)线面平行,垂直3)二面角求法4)什么是线面角,三垂线定理是什么...
公理定理有很多,背都背不住,有时候解题时还不知道用哪个。求解:1)证明面面平行,垂直2)线面平行,垂直3)二面角求法4)什么是线面角,三垂线定理是什么
展开
1个回答
2013-07-09
展开全部
1)要证明面面平行可以证明一个面内的两条相交直线平行于另一个面;要证明面面垂直则可以证明一个面内的两条相交直线垂直另一个面,这样比较证明简单。2)线面平行好证,只需证明直线平行于面内的一条直线就可以了;线面垂直只需证明直线垂直于面内的两条相交直线就可以了。3)求二面角最重要的是做出二面角的平面角,然后在三角形里求解就行了,还可以用向量有关知识求解,不过你们还没学,不会求。4)线面角,顾名思义,就是线与其在面内的射影的夹角的大小。三垂线定理不好表述,下面是我从百度知道上档的,你参考一下。三垂线定理 目录定义 逆定理 证明 使用编辑本段定义 在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。 编辑本段逆定理 三垂线定理的逆定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。 编辑本段证明 用线面垂直证明 已知:如图,PO在α上的投影OA垂直于a 求证:OP⊥a 证明:过P做PA垂直于α ∵PA⊥α ∴PA⊥a 又a⊥OA OA∩PA=A ∴a⊥平面POA ∴a⊥OP 用向量证明三垂线定理 1.已知:PO,PA分别是平面α的垂线,斜线,OA是PA在α内的射影,b属于α,且b垂直于OA,求证:b垂直于PA 证明:∵PO垂直于α,∴PO垂直于b,又∵OA垂直b,向量PA=(向量PO+向量OA) ∴向量PA×b=(向量PO+向量OA)×b=(向量PO×b)+(向量OA×b )=O,∴PA⊥b。 2.已知三个平面OAB,OBC,OAC相交于一点O,∠AOB=∠BOC=∠COA=60度,求交线OA与平面OBC所成的角。 解:∵向量OA=(向量OB+向量AB),O是内心,又∵AB=BC=CA,∴OA与平面OBC所成的角是30°。 编辑本段使用 1,三垂线定理描述的是PO(斜线),AO(射 影),a(直线)之间的垂直关系. 2,a与PO可以相交,也可以异面. 3,三垂线定理的实质是空间内的一条斜线和 平面内的一条直线垂直的判定定理. 关于三垂线定理的应用,关键是找出平面(基准面)的垂线. 至于射影则是由垂足,斜足来确定的,因而是第二位的. 从三垂线定理的证明得到证明a⊥b的一个程序:一垂, 二射,三证.即 第一,找平面(基准面)及平面垂线 第二,找射影线,这时a,b便成平面上的一条直线与 一条斜线. 第三,证明射影线与直线a垂直,从而得出a与b垂直. 注: 1°定理中四条线均针对同一平面而言 2°应用定理关键是找"基准面"这个参照系
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询