求解arctan e^x/e^(2x)的不定积分

 我来答
茹翊神谕者

2021-11-01 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1603万
展开全部

简单计算一下即可,答案如图所示

妫孤阚修永
2020-03-07 · TA获得超过1104个赞
知道小有建树答主
回答量:1725
采纳率:90%
帮助的人:8.1万
展开全部
∫arctan (e^x)/(e^x) dx
=-∫(arctan (e^x) de^(-x)
=-arctan(e^x) / e^x + ∫ dx/(1+e^(2x) )
let
e^x= tany
e^x dx = (secy)^2 dy
∫ dx/(1+e^(2x) )
= ∫ [1/(secy)^2] .[(secy)^2/tany] dy
= ∫ (cosy/siny) dy
= ln|siny|+C'
= ln| e^x/√(1+e^2x) | + C'
∫(arctan e^x)/(e^x) dx
=- arctan(e^x) / e^x + ∫ dx/(1+e^(2x) )
=- arctan(e^x) / e^x + ln| e^x/√(1+e^2x) | + C
希望对你有所帮助
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式