将函数f(x)=π -X (0≤x≤π)展开为以2π 为周期的余弦级数

 我来答
沃渟金添智
2020-06-25 · TA获得超过1211个赞
知道小有建树答主
回答量:1436
采纳率:100%
帮助的人:7.7万
展开全部

傅立叶级数的公式可以参见任何一本微积分/高等数学/数学分析 方面的教科书,网上也可查到,如

徐小湛的博客 用Maple求函数的傅里叶级数 (网易博客)

(下图即出自该博客)

首先,应将
f(x) = π - x  (0≤x≤π)延拓为偶函数,
即 0≤x≤π时,f(x) = π - x;
-π≤x<0时,f(x) = π + x;

再将f(x) 延拓为以2π为周期的偶函数

即 2kπ≤x≤(2k+1)π时,f(x) = π - x;
(2k-1)π<x<2kπ时,f(x) = π + x;


函数大致图像为:

再由傅立叶级数的系数公式,计算a_n, b_n.
因为f(x)延拓为偶函数,sin(nx)为奇函数,故进行傅立叶级数展开后,sin(nx)的系数必定为0.

由前面系数公式算出a_0 = π,
a_n = -(2*(cos(π*n)-1))/(π*n^2);
n=2k时(k∈Z), cos(π*n)=1,
n=2k-1时(k∈Z), cos(π*n)=-1,
即 cos(π*n) =(-1)^n;
所以:
n=2k时(k∈Z),a_n = 0;
n=2k-1时(k∈Z),a_n = 4/[(2k-1)^2*π];

所以,f(x) = π + 4cos((2k-1)*x)/[(2k-1)^2*π].

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式