初中数学难题(必须用初中知识做)
【分析】
设点P的坐标为(x0,y0),则根据函数图象上点的坐标特征知x0²+3y0²=4.首先,根据点A的坐标求得点B的坐标为(1,-1);然后,利用三角形的面积公式S=1/2absinC列出等式1/2|PA|•|PB|sin∠APB=1/2|PM|•|PN|sin∠MPN.即|PA|/|PM|=|PN|/|PB|;再根据两点间的距离公式求得|x0+1|/|3-x0|=|3-x0|/|x0-1|,即(3-x0)²=|x0²-1|,解得x0=5/3.易求y0的值。
【解答】
解:
∵点B与点A(-1,1)关于原点O对称
∴点B的坐标为(1,-1)
若存在点P使得△PAB与△PMN的面积相等
设点P的坐标为(x0,y0)
则:
1/2|PA|•|PB|sin∠APB
=1/2|PM|•|PN|sin∠MPN
∵sin∠APB=sin∠MPN
∴|PA|/|PM|=|PN|/|PB|
∴|x0+1|/|3-x0|=|3-x0|/|x0-1|
即:
(3-x0)²=|x0²-1|
解得:
x0=5/3
∵点P在x2+3y2=4(x≠±1)的图象上
∴x02+3y02=4
∴y0=±√33/9
∴存在点P使得△PAB与△PMN的面积相等
此时点P的坐标为(5/3,±√33/9)。
∴解析式为:y=-2x+4;
(2)设点C关于点O的对称点为C',连接PC'、DC',则PC=PC',
∴PC+PD=PC'+PD≥C'D,即C'、P、D共线时,PC+PD的最小值是C'D,
连接CD,在Rt△DCC'中,
C'D=,
易得点P坐标为(0,1)。
发现相似题
与“一次函数y=kx+b的图像与x、y轴分别交于点A(2,0),B(0,4)。(1)..”考查相似的试题有:
试题ID
试题题文
91529 某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管的水
91359 你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不
91283 在等式y=kx+b中,当x=1时,y=-2;当x=-1时,y=-4。则k=(),b=()。
91208 如图,大拇指与小拇指尽量张开时,2指尖的距离称为指矩.某项研究表明,一般情
90465 弹簧秤挂上物体时,弹簧的总长与物体质量之间的关系如下表:物体质量x(千克)0
相关考点及知识拓展
求一次函数的解析式及一次函数的应用
1、待定系数法求一次函数的解析式:
(1)定义:先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
(2)用待定系数法求一次函数解析式的四个步骤:
第一步(设):设出函数的一般形式。(称一次函数通式)
第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
2、一次函数的应用:应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
注:(1)有图像的,注意坐标轴表示的实际意义及单位;
(2)注意自变量的取值范围。
轴对称
1、轴对称的定义:把一个图形沿着某条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称轴。
2、轴对称图形的定义:把一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形关就叫做轴对称图形,这条直线是它的对称轴。
3、轴对称的性质:
(1)对应点所连的线段被对称轴垂直平分;
(2)对应线段相等,对应角相等;
(3)关于某直线对称的两个图形是全等图形。
4、轴对称的判定:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。