初中数学难题(必须用初中知识做)

用描点法画出x²+3y²=4(x≠±1)的图像。点B与点A(-1,1)关于原点O对称,P是动点,且P点在x²+3y²=4(x≠±1... 用描点法画出x²+3y²=4(x≠±1)的图像。点B与点A(-1,1)关于原点O对称,P是动点,且P点在x²+3y²=4(x≠±1)的图像上,设直线AP和BP分别与直线x=3交于点M,N,则存在点P使得△PAB与△PMN的面积相等,求点P的坐标。 展开
无所谓的文库
2013-07-10 · TA获得超过1.9万个赞
知道大有可为答主
回答量:2178
采纳率:97%
帮助的人:900万
展开全部

【分析】

设点P的坐标为(x0,y0),则根据函数图象上点的坐标特征知x0²+3y0²=4.首先,根据点A的坐标求得点B的坐标为(1,-1);然后,利用三角形的面积公式S=1/2absinC列出等式1/2|PA|•|PB|sin∠APB=1/2|PM|•|PN|sin∠MPN.即|PA|/|PM|=|PN|/|PB|;再根据两点间的距离公式求得|x0+1|/|3-x0|=|3-x0|/|x0-1|,即(3-x0)²=|x0²-1|,解得x0=5/3.易求y0的值。

【解答】

解:

∵点B与点A(-1,1)关于原点O对称

∴点B的坐标为(1,-1)
若存在点P使得△PAB与△PMN的面积相等

设点P的坐标为(x0,y0)
则:

1/2|PA|•|PB|sin∠APB

=1/2|PM|•|PN|sin∠MPN

∵sin∠APB=sin∠MPN
∴|PA|/|PM|=|PN|/|PB|

∴|x0+1|/|3-x0|=|3-x0|/|x0-1|    

即:

(3-x0)²=|x0²-1|

解得:

x0=5/3

∵点P在x2+3y2=4(x≠±1)的图象上
∴x02+3y02=4
∴y0=±√33/9

∴存在点P使得△PAB与△PMN的面积相等

此时点P的坐标为(5/3,±√33/9)。


lbkbdwk
2013-07-09
知道答主
回答量:21
采纳率:0%
帮助的人:10.1万
展开全部
解:(1)将点A、B的坐标代入y=kx+b并计算得k=-2,b=4,
∴解析式为:y=-2x+4;
(2)设点C关于点O的对称点为C',连接PC'、DC',则PC=PC',
∴PC+PD=PC'+PD≥C'D,即C'、P、D共线时,PC+PD的最小值是C'D,
连接CD,在Rt△DCC'中,
C'D=,
易得点P坐标为(0,1)。

发现相似题
与“一次函数y=kx+b的图像与x、y轴分别交于点A(2,0),B(0,4)。(1)..”考查相似的试题有:

试题ID
试题题文

91529 某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管的水
91359 你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不
91283 在等式y=kx+b中,当x=1时,y=-2;当x=-1时,y=-4。则k=(),b=()。
91208 如图,大拇指与小拇指尽量张开时,2指尖的距离称为指矩.某项研究表明,一般情
90465 弹簧秤挂上物体时,弹簧的总长与物体质量之间的关系如下表:物体质量x(千克)0
相关考点及知识拓展
求一次函数的解析式及一次函数的应用
1、待定系数法求一次函数的解析式:
(1)定义:先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
(2)用待定系数法求一次函数解析式的四个步骤:
第一步(设):设出函数的一般形式。(称一次函数通式)
第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
2、一次函数的应用:应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
注:(1)有图像的,注意坐标轴表示的实际意义及单位;
(2)注意自变量的取值范围。
轴对称
1、轴对称的定义:把一个图形沿着某条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称轴。
2、轴对称图形的定义:把一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形关就叫做轴对称图形,这条直线是它的对称轴。
3、轴对称的性质:
(1)对应点所连的线段被对称轴垂直平分;
(2)对应线段相等,对应角相等;
(3)关于某直线对称的两个图形是全等图形。
4、轴对称的判定:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式