如图,△ABC中,∠ACB=90°,AC=BC=2,点D在AB上运动,∠CDE=45°,DE与CB交与点E.
(1)证明△ADC相似于△BEC(2)若DE=x,CE=y,求y与x的函数关系式,并求出自变量x的取值范围;(3)若△CDE为等腰三角形,求x的值。...
(1)证明△ADC相似于△BEC
(2)若DE=x,CE=y,求y与x的函数关系式,并求出自变量x的取值范围;
(3)若△CDE为等腰三角形,求x的值。 展开
(2)若DE=x,CE=y,求y与x的函数关系式,并求出自变量x的取值范围;
(3)若△CDE为等腰三角形,求x的值。 展开
2013-07-09
展开全部
(1)好吧 亲 我觉得你应该是打错了 我就证明△ADC相似于△BED
因为 △ABC中,∠ACB=90°,AC=BC=2
所以 △ABC为等腰直角三角形
因此 ∠CAD=∠DBE=45°
又因为 ∠CDA= ∠CDE+ ∠EDB ; ∠ DEB= ∠EDB+∠DBE;∠CDE=∠DBE=45°
所以 ∠CDA= ∠ DEB
三角形内角和180° , ∠CAD=∠DBE,∠CDA= ∠ DEB
所以∠ACD=∠BDE
由上可得△ADC相似于△BED
(2)不想打太多字了 我还是打思路好了
函数关系式由三角形相似可以推出
X的范围要遵循两边之和大于第三边,两边之差小于第三边,且不能大于2倍根2
(3)根据(2)求出的XY关系式,再加上等腰三角形的条件,最终是可以求出来的
\(^o^)/~ 终于敲完了 睡觉去也
因为 △ABC中,∠ACB=90°,AC=BC=2
所以 △ABC为等腰直角三角形
因此 ∠CAD=∠DBE=45°
又因为 ∠CDA= ∠CDE+ ∠EDB ; ∠ DEB= ∠EDB+∠DBE;∠CDE=∠DBE=45°
所以 ∠CDA= ∠ DEB
三角形内角和180° , ∠CAD=∠DBE,∠CDA= ∠ DEB
所以∠ACD=∠BDE
由上可得△ADC相似于△BED
(2)不想打太多字了 我还是打思路好了
函数关系式由三角形相似可以推出
X的范围要遵循两边之和大于第三边,两边之差小于第三边,且不能大于2倍根2
(3)根据(2)求出的XY关系式,再加上等腰三角形的条件,最终是可以求出来的
\(^o^)/~ 终于敲完了 睡觉去也
展开全部
因为∠A=∠B=∠CDA=45°,所以∠ADC+∠CDA+∠EDB=∠A+∠ACD+∠CDA,所以
∠ACD=∠EDB,所以两三角形相似
好多字,不想打了
∠ACD=∠EDB,所以两三角形相似
好多字,不想打了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我以前在初中也做过同样的问题
追问
那能解答一下吗
追答
都忘记了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询