什么叫功率谱密度函数
3个回答
2013-07-12
展开全部
在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。
功率谱密度
上面能量谱密度的定义要求信号的傅里叶变换必须存在,也就是说信号平方可积或者平方可加。一个经常更加有用的替换表示是功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。此瞬时功率(平均功率的中间值)可表示为: P=s(t)^2
由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。
信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。
功率谱密度
上面能量谱密度的定义要求信号的傅里叶变换必须存在,也就是说信号平方可积或者平方可加。一个经常更加有用的替换表示是功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。此瞬时功率(平均功率的中间值)可表示为: P=s(t)^2
由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。
信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。
2013-07-12
展开全部
自功率谱密度函数Sxx(f):反映相关函数在时域内表达随机信号自身与其他信号在不同时刻的内在联系。
当随机信号均值为零时,自相关函数和自功率谱密度函数互为傅立叶变换对。
自功率谱密度有明确的物理含义:当tao=0时,Sxx(f)曲线与频率轴f所包围的面积就是信号的平均功率。另外,Sxx(f)还表明了信号的功率密度沿频率轴的分布状况,因此称Sxx(f)为自功率谱密度函数。
当随机信号均值为零时,自相关函数和自功率谱密度函数互为傅立叶变换对。
自功率谱密度有明确的物理含义:当tao=0时,Sxx(f)曲线与频率轴f所包围的面积就是信号的平均功率。另外,Sxx(f)还表明了信号的功率密度沿频率轴的分布状况,因此称Sxx(f)为自功率谱密度函数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-07-12
展开全部
9.2.5 功率密度谱 和互谱密度 前面给出的一些数字特征如均值,方差和相关函数等,描述的是连续随机信号在时间域上的特征,那么,随机信号在频域的数字特征是什么?如何计算的?它与时域特征有什么关系?1、功率密度谱 设X(t)为平稳的连续随机信号,它的任一个样本函数x(t)是一个功率信号,其平均功率可以定义为: (9.2.20) 依据帕斯瓦尔定理,设 表示 的傅立叶变换,则上式可表示为 (9.2.21) 式中 称为样本功率密度或样本功率谱。由于随机信号的每一个样本实现是不能预知的,所以必须用所有样本功率密度的统计平均值来描述平稳的连续随机信号X(t)的频域特征,即随机信号在频域的数字特征可定义如下。定义10 平稳的连续随机信号X(t)的功率密度谱定义为样本功率密度的统计平均,即 (9.2.22)维纳—欣钦(Wiener-Khinchine)定理 若X(t)为平稳随机信号,当自相关函数为绝对可积时,自相关函数 和功率谱密度 为一傅里叶变换对,即( )。 (9.2.23) (9.2.24)2、互谱密度 同理,在频域描述两个随机信号X(t)和 Y(t)相互关联程度的数字特征,可以定义为互谱功率密度简称互谱密度 。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询