![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
求下列这两题的过程?谢谢!
展开全部
1、由根与系数的关系知:sinθ+cosθ=-6k/8,sinθ*cosθ=(2k+1)/8;
∴ (-6k/8)²=(sinθ+cosθ)²=sin²θ+cos²θ+2sincθosθ=1+2*(2k+1)/8;整理得:9k²-8k-20=0;
(1)解方程得 k=-10/9,(k=2舍去,因 -6*2/8=sinθ+cosθ≥-√2 不能成立);
(2)原方程的两根分别为 x1=(5+√47)/12,x2=(5-√47)/12;
∴ tanθ=sinθ/cosθ=x1/x2=(5+√47)/(5-√47)=-(5+√47)²/24=-3-(5√47)/12;
或 tanθ=x2/x1=(5-√47)/(5+√47)=-(5-√47)²/24=-3+(5√47)/12
2、√[(1+sinα)/(1-sinα)] -√[(1-sinα)/(1+sinα)]=-2tanα;
(1+sinα)/√(1-sin²α)-(1-sinα)/√(1-sin²α)=-2tanα;
若 cosα>0,则有 (1+sinα)-(1-sinα)=-2sinα,即 4sinα=0;∴ α=2kπ,k 是整数;
若 cosα<0,则有 -(1+sinα)+(1-sinα)=-2sinα,α 任意;但 2kπ+(π/2)<α<2kπ+(3π/2);
∴ α={α|α=2kπ,2kπ+(π/2)<α<2kπ+(3π/2)},k为整数;
∴ (-6k/8)²=(sinθ+cosθ)²=sin²θ+cos²θ+2sincθosθ=1+2*(2k+1)/8;整理得:9k²-8k-20=0;
(1)解方程得 k=-10/9,(k=2舍去,因 -6*2/8=sinθ+cosθ≥-√2 不能成立);
(2)原方程的两根分别为 x1=(5+√47)/12,x2=(5-√47)/12;
∴ tanθ=sinθ/cosθ=x1/x2=(5+√47)/(5-√47)=-(5+√47)²/24=-3-(5√47)/12;
或 tanθ=x2/x1=(5-√47)/(5+√47)=-(5-√47)²/24=-3+(5√47)/12
2、√[(1+sinα)/(1-sinα)] -√[(1-sinα)/(1+sinα)]=-2tanα;
(1+sinα)/√(1-sin²α)-(1-sinα)/√(1-sin²α)=-2tanα;
若 cosα>0,则有 (1+sinα)-(1-sinα)=-2sinα,即 4sinα=0;∴ α=2kπ,k 是整数;
若 cosα<0,则有 -(1+sinα)+(1-sinα)=-2sinα,α 任意;但 2kπ+(π/2)<α<2kπ+(3π/2);
∴ α={α|α=2kπ,2kπ+(π/2)<α<2kπ+(3π/2)},k为整数;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询