复数是什么意思?
复数是一个与单数相对的概念,指的是两个或两个以上的可数名词,用于标示多于一个的物件,在有双数概念的语言中则表示多于两个的名词数量。在英语里,多数的名词都有众数,而另一部份的语言则缺乏,即可数名词有复数,不可数名词没有复数。
例如:
egg是可数名词,表示一个鸡蛋;若为eggs,表示多个鸡蛋。
扩展资料
在英语中,名词都有单复数的变化。单数表示“一”,复数表示“多于一”的概念。也就是通过一个单词,以(an)apple 出现,你就知道一定是一个,而apples出现,一定是多余一个,都不需要别人告诉你是几个。
名词的复数一般都是在名词后面加s,以发咝擦音的ch,sh,ge,z,s结尾时,要加es,以辅音字母加y结尾的名词,则要把y去i再加上es。
还有一些不规则的词,比如police,看上去是单数,但是却会以复数对待,认为police是一个整体。他们叫集体名词。
在一般现在时中,单数的名词就意味着动词也要变化成单数的形式。这就是所谓的“三单”。
我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;
当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
扩展资料:
1799年,维塞尔首次发表了对复数的正确几何解释,他同时用解析的方法表示了未知线段的长度和方向(类似于向量)。
事实上,早在1787年,他已经详细说明了怎样给出在一个平面上的方向的解析表示。在1799年的论文里,他定义了平面内有向线段(复数)的加法与乘法,并给出了√-1的一个几何解释。
而阿尔冈则创造性的讨论了复数的几何表示,对有向线段的积做了几何解释,并且用这种几何思想证明了三角,几何及代数的一些定理。
1830年,高斯第一次发表了有关复数几何表示的论文,并详细论述了用直角坐标系上复平面上的点表示复数a+bi,使复数有了立足之地,人们才最终承认了复数。