矩阵的转置怎么算?
1个回答
展开全部
设矩阵a经过初等行变换之后,化为上三角矩阵b,则a等价于b
矩阵a'经过初等列变换之后,可化为下三角矩阵c,则a'等价于c
显然,b的转置矩阵b'=c
因为,转置之后对角线上的元素不变,所以,b和c的对角线元素相等。
因为,三角形行列式的值等于对角线上元素的乘积
又因为,|λi-a|=|λi-b|=对角线上元素的乘积,
|λi-a'|=|λi-c|=对角线上元素的乘积
所以,|λi-a|=|λi-a'|
所以,矩阵a与矩阵a的转置矩阵的特征值相同
化成三角形行列式法:
先把行列式的某一行(列)全部化为 1 ,再利用该行(列)把行列式化为三角形行列式,从而求出它的值,这是因为所求行列式有如下特点:
1、各行元素之和相等;
2 各列元素除一个以外也相等。
充分利用行列式的特点化简行列式是很重要的。
根据行列式的特点,利用行列式性质把某行(列)化成只含一个非零元素,然后按该行(列)展开。展开一次,行列式降低一阶,对于阶数不高的数字行列式本法有效。
富港检测技术(东莞)有限公司_
2024-06-06 广告
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询