f(x)在[0,1]连续,在(0,1)可导,f(0)=f(1)=0,证(0,1)存在ξ,f'(ξ)+2f(ξ)=0

 我来答
科创17
2022-06-26 · TA获得超过5887个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:173万
展开全部
考察函数 F(x)=f(x)*e^(2x) ,显然满足:在 [0,1] 上连续,在(0,1)内可导,且 F(0)=F(1)=0 ,且 F '(x)=f '(x)*e^(2x)+2f(x)*e^(2x) .由罗尔中值定理,存在 ξ∈(0,1) 使 F‘(ξ)=0 ,即 f '(ξ)*e^(2ξ)+2f(ξ)*e^(2...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式