怎样求矩阵对角线上元素的特征值和特征向量

 我来答
匿名用户
2022-08-15
展开全部
把特征值代入特征方程,运用初等行变换法,将矩阵化到最简,然后可得到基础解系。求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则可求出属于特征值的全部特征向量。
扩展资料
求特征向量:
设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。
判断矩阵可对角化的充要条件
矩阵可对角化有两个充要条件:
1、矩阵有n个不同的特征向量;
2、特征向量重根的重数等于基础解系的个数。对于第二个充要条件,则需要出现二重以上的重特征值可验证(一重相当于没有重根)。
若矩阵A可对角化,则其对角矩阵Λ的主对角线元素全部为A的特征值,其余元素全部为0。(一个矩阵的对角阵不唯一,其特征值可以换序,但都存在由对应特征向量顺序组成的可逆矩阵P使P⁻¹AP=Λ)。
矩阵特征值的方法如下:
任意一个矩阵A可以分解成如下两个矩阵表达的形式:
其中矩阵Q为正交矩阵,矩阵R为上三角矩阵,至于QR分解到底是怎么回事,矩阵Q和矩阵R是怎么得到的,你们还是看矩阵论吧,如果我把这些都介绍了,感觉这篇文章要写崩,或者你可以先认可我是正确的,然后往下看。
由式(22)可知,A1和A2相似,相似矩阵具有相同的特征值,说明A1和A2的特征值相同,我们就可以通过求取A2的特征值来间接求取A1的特征值。
arongustc
科技发烧友

2022-09-12 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:2.3万
采纳率:66%
帮助的人:5871万
展开全部
没有这种概念,特征值和特征向量都是属于矩阵的,没有所谓的对角线上元素的特征值和特征向量
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式