微分和求导是一个意思吗
1个回答
展开全部
微分和求导不是一个意思。
微分法则和芹带求导法则的不同点有:
1、两者定义不同
微分法则:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。
求导法则:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
2、表示方式不同
微分法则:微分又可记作嫌迹芦dy=f'(x)dx,例如:d(sinX)=cosXdX。
求导法则:函数的导数是f'(x)。
3、几何意义不同
微分法则:设Δx是曲线y=f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。
求导法则:当自变量州早X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可导。
微分法则和芹带求导法则的不同点有:
1、两者定义不同
微分法则:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。
求导法则:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
2、表示方式不同
微分法则:微分又可记作嫌迹芦dy=f'(x)dx,例如:d(sinX)=cosXdX。
求导法则:函数的导数是f'(x)。
3、几何意义不同
微分法则:设Δx是曲线y=f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。
求导法则:当自变量州早X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可导。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询