初中数学几何相似三角形证明题

详细过程!... 详细过程! 展开
郁闷的_蚱蜢
2013-07-11 · TA获得超过834个赞
知道小有建树答主
回答量:316
采纳率:75%
帮助的人:286万
展开全部
(1)1/AB+1/CD=1/EF还成立。
证明:如图2所示,根据已知可知1/AM+1/CK=1/EN
∵ AB∥CD∥EF
∴∠B=∠D=∠F(平行线同位角相等。Rt△ABM、Rt△CDK、Rt△EFN中三个对应锐角)
设∠B=∠D=∠F=∠1
在Rt△ABM中,则有:sin∠B=sin∠1=AM/AB
则:AB=AM/sin∠1
同理在Rt△CDK、Rt△EFN中,可得:
CD=CK/sin∠1;EF=EN/sin∠1
∵ 1/AM+1/CK=1/EN(已知)
(等式两边同时乘以﹙1/sin∠1﹚,可得)
∴ ﹙1/sin∠1﹚﹙1/AM+1/CK﹚=﹙1/sin∠1﹚﹙1/EN﹚
即: 1/﹙AM/sin∠1﹚+1/﹙CK/sin∠1﹚=1/﹙EN/sin∠1﹚
又∵ AB=AM/sin∠1;CD=CK/sin∠1;EF=EN/sin∠1(以证)
∴ 1/AB+1/CD=1/EF

(2)关系式为:1/S△ABD+ 1/S△BDC=1/S△BED
证明:∵ 1/AM+1/CK=1/EN
∴ ﹙1/ BD﹚﹙1/AM+1/CK﹚=﹙1/ BD﹚﹙1/EN﹚
(等式两边同时乘以﹙2/BD﹚,可得)
∴ 1/AM•BD+1/CK•BD=1/EN•BD
又∵ S△ABD=AM•BD/2 → AM•BD=2S△ABD
S△BDC=CK•BD/2 → CK•BD=2S△BDC
S△BED=EN•BD/2 → EN•BD=2S△BED
代入等式中,可得:
1/﹙2S△ABD﹚+ 1/﹙2S△BDC﹚=1/﹙2S△BED﹚
∴ ﹙1/2﹚﹙1/S△ABD+ 1/S△BDC﹚=﹙1/2﹚﹙1/S△BED﹚
约去等式两边常数1/2后,可得:
1/S△ABD+ 1/S△BDC=1/S△BED
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hasomany
2013-07-11 · TA获得超过397个赞
知道答主
回答量:75
采纳率:100%
帮助的人:49万
展开全部
(1)成立
由图一结论1/AB+1/CD=1/EF ………………①
在图二中得 1/AM+1/CK=1/EN ………………②
因为AB//EF//CD
所以 角ABM=角EFN=角CDK
因为那三个直角 所以△ABM∽△EFN∽△CDK
所以 aAB=bEF=cCD
aAM=bEN=cCK(相似三角形对应边成比例)
AB/AM = EF/EN = CD/CK = 1/k (参数随便设的,为了后面计算方便 )
kAB = AM kEF = EN kCD = CK
代入②式
1/kAB+1/kCD=1/kEF
把k消掉
得①
所以成立

(2)第二问是啥意思?找出什么关系式?

楼上正解哈~好久没做数学题了
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
十一sisiya
2013-07-11 · 超过16用户采纳过TA的回答
知道答主
回答量:59
采纳率:0%
帮助的人:59.2万
展开全部

追问
没看明白!
追答
平行两组相似三角形
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式