高等数学中的“收敛”是什么意思?

星月谈教育
高能答主

2019-07-22 · 带你走进教育,看不一样的教育。
星月谈教育
采纳数:667 获赞数:272805

向TA提问 私信TA
展开全部

收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。

1、收敛函数:

对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

2、如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数。

对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项 级数 ,因而有一确定的和s。

这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)

记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0

扩展资料:

迭代算法的敛散性:

1、全局收敛:

对于任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk+1=φ(Xk)在[a,b]上收敛于X*。

2、局部收敛:

若存在X*在某邻域R={X| |X-X*|<δ},对任何的X0∈R,由Xk+1=φ(Xk)所产生的点列收敛,则称Xk+1=φ(Xk)在R上收敛于X*。

参考资料来源:百度百科 - 收敛

轮看殊O
高粉答主

2019-06-18 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:751万
展开全部

收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。

收敛数列

令{  }为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|  -A|<b恒成立,就称数列{  }收敛于A(极限为A),即数列{  }为收敛数列。

函数收敛

定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

收敛的定义方式很好的体现了数学分析的精神实质。

如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数。

扩展资料

收敛就是发展趋势会趋向一个固定的值,包括0;与收敛相对的是开放,也就是趋于无穷大,包括正无穷和负无穷。

有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。

例如:f(x)=1/x 当x趋于无穷是极限为0,所以收敛。

f(x)= x 当x趋于无穷是极限为无穷,即没有极限,所以发散。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
白雪忘冬
高粉答主

2019-05-25 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376617

向TA提问 私信TA
展开全部

收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。

1、收敛数列

令{an}为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|an-A|<b恒成立,就称数列{an}收敛于A(极限为A),即数列{an}为收敛数列。

2、函数收敛

定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1、x2满足0<|x1-x0|<c、0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

扩展资料

收敛数列的性质:

1、唯一性

如果数列Xn收敛,每个收敛的数列只有一个极限。

2、有界性

定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。

定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。

3、保号性

如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。

参考资料来源:百度百科-收敛

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2019-04-03 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:174万
展开全部

收敛是一个数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。

函数收敛:柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

扩展资料:

迭代算法的敛散性

1.全局收敛

对于任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk+1=φ(Xk)在[a,b]上收敛于X*。

2.局部收敛

若存在X*在某邻域R={X| |X-X*|<δ},对任何的X0∈R,由Xk+1=φ(Xk)所产生的点列收敛,则称Xk+1=φ(Xk)在R上收敛于X*。

经济学中的收敛,分为绝对收敛和条件收敛

1.绝对收敛,指的是不论条件如何,穷国比富国收敛更快。

2.条件收敛,指的是技术给定其他条件一样的话,人均产出低的国家,相对于人均产出高的国家,有着较高的人均产出增长率,一个国家的经济在远离均衡状态时,比接近均衡状态时,增长速度快。

参考资料来源:百度百科-收敛

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
教育小百科达人
推荐于2019-08-25 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:475万
展开全部

收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。

定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

扩展资料:

对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。

函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项级数 ,因而有一确定的和s。

这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)

记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0

1、鲍尔收敛性质:设U是开集,{u}C.扩(U)是单调增加列,若极限函数u=lim u}局部有界,则uE.扩(U)。

2、杜布收敛性质:设U是开集,{un} G扩(U)是单调增加列,若极限函数u=lim u在U的一个稠密子集里有限,则。E}罗(U)。

3、布雷洛收敛性质:设U是区域,{ u., } c笋<U)是单调增加列,若极限函数u=lim u在U中某一点有限,则u E孝二<U).。

显然,具有杜布收敛性质或布雷洛收敛性质的吧扩必具有鲍尔收敛性质,反之不然.如果X是局部连通的,那么具有布雷洛收敛性质者必具有杜布收敛性质,反之不然。

参考资料来源:百度百科——收敛

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(10)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式