
把下面这积分化为极坐标形式下的二次积分
1个回答
展开全部
积分区域是半圆,化成极坐标为:r=2acosθ,(0≤θ≤π)
原式=∫[0,π/2]dθ ∫[0,2acosθ ] (r^2*r)dr
=∫[0,π/2]dθ [0,2acosθ [ r^4/4
=(1/4)∫[0,π/2]dθ [0,2acosθ ] (cosθ )^4
=(16a^4/4)∫[0,π/2]dθ [1+cos2θ)^2/4
=a^4∫[0,π/2]dθ [1+2cos2θ+(cos2θ)^2]
=a^4[θ+sin2θ+θ/2+(sin4θ)/8][0,π/2]
=a^4(3/2*π/2+0+0)
=3πa^4/4.
原式=∫[0,π/2]dθ ∫[0,2acosθ ] (r^2*r)dr
=∫[0,π/2]dθ [0,2acosθ [ r^4/4
=(1/4)∫[0,π/2]dθ [0,2acosθ ] (cosθ )^4
=(16a^4/4)∫[0,π/2]dθ [1+cos2θ)^2/4
=a^4∫[0,π/2]dθ [1+2cos2θ+(cos2θ)^2]
=a^4[θ+sin2θ+θ/2+(sin4θ)/8][0,π/2]
=a^4(3/2*π/2+0+0)
=3πa^4/4.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2025-04-21 广告
积分球是一个内壁涂有白色漫反射材料的空腔球体,又称光度球,光通球等。 球壁上开一个或几个窗孔,用作进光孔和放置光接收器件的接收孔。积分球的内壁应是良好的球面,通常要求它相对于理想球面的偏差应不大于内径的0.2%。球内壁上涂以理想的漫反射材料...
点击进入详情页
本回答由上海蓝菲提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询