如何证明a+b的绝对值小于等于a的绝对值+b的绝对值

 我来答
机器1718
2022-06-12 · TA获得超过6854个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:162万
展开全部
因为这两个都是正数,所以用他们的平方来证明
|a+b|^2=a^2+2ab+b^2
(|a|+|b|)^2=a^2+2|ab|+b^2
显然下面的式子中的2|ab|>=2ab
所以命题得证:a+b的绝对值小于等于a的绝对值+b的绝对值
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式