均匀分布的概率密度函数是什么?
展开全部
均匀分布的概率密度函数是f(x)=1/(b-a)。
在概率论和统计学中,均匀分布(矩形分布),是对称概率分布,在相同长度间隔的分布概率是等可能的。均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。
概率论分析
均匀分布对于任意分布的采样是有用的。 一般的方法是使用目标随机变量的累积分布函数(CDF)的逆变换采样方法。 这种方法在理论工作中非常有用。 由于使用这种方法的模拟需要反转目标变量的CDF,所以已经设计了cdf未以封闭形式知道的情况的替代方法。 一种这样的方法是拒收抽样。
正态分布是逆变换方法效率不高的重要例子。 然而,有一个确切的方法,Box-Muller变换,它使用逆变换将两个独立的均匀随机变量转换成两个独立的正态分布随机变量。
在模数转换中,发生量化误差。 该错误是由于四舍五入或截断。 当原始信号比一个最低有效位(LSB)大得多时,量化误差与信号不显着相关,并具有大致均匀的分布。 因此,RMS误差遵循该分布的方差。
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
(1)f(x)=∫-∞→∞f(x,y)dy=xe⁻ˣ,x>0,0,其它f(y)=∫-∞→∞f(x,y)dy=∫y→∞e⁻ˣdx=-e⁻ˣ|y,∞=e⁻ʸ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询