请问这个用球坐标怎么算呢?
题目是这样的v:x^2+y^2+z^2<=a^2,x^2+y^2+z^2<=2*a*z求在这个v上的积分z^2dxdydz红色部分,用求坐标变换范围写成水平方向的角A从0...
题目是这样的v: x^2+y^2+z^2<=a^2, x^2+y^2+z^2<=2*a*z求在这个v上的积分z^2dxdydz红色部分,用求坐标变换范围写成水平方向的角A从0积到2pi,垂直方向的角B从0积到pi/3,r从a/2cosB到a.这部分算下来跟柱坐标算下来的答案一样。但是黄色部分,我怎么算都不太对,这个是由两部分组成的,第一是水平方向的角A从0积到2pi,垂直方向的角B从0积到pi/3,r从a/2到a/2cosB;加上水平方向的角A从0积到2pi,垂直方向的角B从pi/3积到pi/2,r从0到2acosB麻烦大家看看到底什么地方出错了?还有一个补充的问题:在用柱坐标计算的时候,黄色部分sita是从0到2pi, r是从0到根号下a^2-z^2,z是从a/2到a。有一点不是很清楚,从两个球体的公式可以算出,相交部分r满足从0到根号3/2,如果我直接从0到根号3/2去积分的话算出来就是错的,只能用z的表达式来积分。这有什么规律还是要求吗?
展开
2013-07-13
展开全部
球面坐标一般只有两种情形:1整个球面或半个球面,2区域由球面与锥面围成。这里需要出现一个锥面。两个球面的交线是圆:z=a/2,x^2+y^2=3a/4,以此圆为底面作一个顶点为原点,z轴为对称轴的锥面(在球面坐标系下,锥面的方程是φ=π/3)。用锥面分割区域,两个区域都是由球面与锥面围成,使用球面坐标即可
长荣科机电
2024-10-27 广告
2024-10-27 广告
直角坐标机器人,作为深圳市长荣科机电设备有限公司的明星产品之一,以其高精度、高稳定性在自动化生产线上发挥着关键作用。该机器人采用直线电机或精密导轨驱动,能在电商平台Y、Z三个直角坐标轴上实现精准定位与运动控制,广泛应用于电子装配、包装、检测...
点击进入详情页
本回答由长荣科机电提供
2013-07-13
展开全部
按柱坐标变换的话下面部分z是0到a/2,然后是∫∫dxdz的形式,而这个积分区域是D(z)是z的函数,因为z的变化会产生不同的垂直于z轴的平面(圆),而在柱面坐标的变换下r的变化范围就是0到这个垂直于z轴的平面圆的边界,这个边界对应的r值就是满足x^2+y^2=a^2-z^2=r^2文字描述可能讲得不太清楚,希望你能理解啊~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-07-13
展开全部
是的,我意识到自己的问题在哪里。这个问题书上给出的答案只有柱面,所以我就沿用柱面的方法把这个题目做了下,不过红色部分用球坐标按照我的方法,算出来跟柱坐标是一样的,有问题的是黄色部分,不过有个研友已经帮我算出来了~按照球面的话,是研友zilijc给的方法划分是最合理的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-07-13
展开全部
没看清楚什么呢?你分割区域的方法只能使用柱面坐标。按你所写,你想想看“fai: 0~pi/3 r: (a/2cosfai)~a”对应的区域是红色部分积分吗?我记得同济高数课本上有这个习题,可以找习题解答看看
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-07-13
展开全部
按柱坐标变换的话下面部分z是0到a/2,然后是∫∫dydz(这个应该是dxdy吧~)的形式,而这个积分区域是D(z)是z的函数,因为z的变化会产生不同的垂直于z轴的平面(圆),而在柱面坐标的变换下r的变化范围就是0到这个垂直于z轴的平面圆的边界,这个边界对应的r值就是满足x^2+y^2=a^2-z^2=r^2先谢谢你的回答~这个解释我觉得也讲得通,我在另外一本参考书上,这个题目他用了截面法,即用垂直于z轴的一个面去截相交部分,给出的表达式是sita从0到2pi,r从0到根号3a/2,z从a-根号下a平方减r平方,到根号下a平方-r平方这个算出来也是对的,柱面下z上下限取常数,r用z的表达式,而它这种方法又是r取常数,z取r的表达式,凌乱了。。。该怎么去总结这个规律呢??或者什么时候该取常数,什么时候该取表达式呢??
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询