在等边三角形ABC中,D是三角形ABC外一点,且角BDC=120度,连接AD,求证:AD=BD+CD

 我来答
可杰17
2022-06-24 · TA获得超过946个赞
知道小有建树答主
回答量:309
采纳率:100%
帮助的人:55.3万
展开全部
证明:
延长BD到E点,使DE=DC,
∵∠BDC=120度,所以∠CDE=60°
∴△CDE是等边三角形
∴∠ECD=60度,CD=CE
∵∠BCE=∠ACD,又△ABC是等边三角形,AC=BC,
∴ACD≌△BCE
∴AD=BE=BD+DE=BD+DC
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式