已知等边△ABC和点P 设P到△三边AB AC BC的距离分别为h1 h2 10
已知等边△ABC和点P,设点P到△ABC三边AB,AC.BC的距离分别为h1、h2、h3,△ABC的高为h。如图,“若点P在一边BC上(如图1),此时h3=0,可得结论:...
已知等边△ABC和点P,设点P到△ABC三边AB,AC.BC的距离分别为h1 、h2、 h3,△ABC的高为h。如图,“若点P在一边BC上(如图1),此时h3=0,可得结论:h1+h2+h3=h。”请解决下列问题:当点P在△ABC内(如图2),点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3和h之间又有怎样的关系?请写出你的猜想,不需证明。
展开
1个回答
展开全部
要根据三角形的面积来算的,证明比较复杂,我也是初二的,还要写数学,就这么说了,根据面积算的啊。
(1)根据已知可以证得:②hl+h2+h3=h;③h1-h2+h3=h;④h1+h2+h3=h;⑤h1+h2-h3=h;
(2)连接AP,可得S△APB+S△APC=S△ABC,由h3=0,AB=AC=BC,即可证得h1+h2+h3=h;
(3)连接PA、PB、PC,可得S△APB+S△APC=S△ABC+S△BPC,由AB=AC=BC,即可求得h1+h2=h+h3,则可得h1+h2-h3=h.解答:解:(1)②hl+h2+h3=h;③h1-h2+h3=h;④h1+h2+h3=h;⑤h1+h2-h3=h.
(2)图②中,h1+h2+h3=h.
连接AP,
则S△APB+S△APC=S△ABC,
∴ AB×h1+ AC×h2= BC×h.
又h3=0,AB=AC=BC,
∴h1+h2+h3=h.
(3)图⑤中,h1+h2-h3=h.
连接PA、PB、PC,(如答图)
则S△APB+S△APC=S△ABC+S△BPC.
∴ AB×hl+ AC×h2= BC×h+ BC×h3
又AB=AC=BC,
(1)根据已知可以证得:②hl+h2+h3=h;③h1-h2+h3=h;④h1+h2+h3=h;⑤h1+h2-h3=h;
(2)连接AP,可得S△APB+S△APC=S△ABC,由h3=0,AB=AC=BC,即可证得h1+h2+h3=h;
(3)连接PA、PB、PC,可得S△APB+S△APC=S△ABC+S△BPC,由AB=AC=BC,即可求得h1+h2=h+h3,则可得h1+h2-h3=h.解答:解:(1)②hl+h2+h3=h;③h1-h2+h3=h;④h1+h2+h3=h;⑤h1+h2-h3=h.
(2)图②中,h1+h2+h3=h.
连接AP,
则S△APB+S△APC=S△ABC,
∴ AB×h1+ AC×h2= BC×h.
又h3=0,AB=AC=BC,
∴h1+h2+h3=h.
(3)图⑤中,h1+h2-h3=h.
连接PA、PB、PC,(如答图)
则S△APB+S△APC=S△ABC+S△BPC.
∴ AB×hl+ AC×h2= BC×h+ BC×h3
又AB=AC=BC,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询