设z=(x+y)^xy,求dz
展开全部
lnz=xyln(x+y)
两边对x求导得
z'x/z=yln(x+y)+xy/(x+y)
z'x=z[yln(x+y)+xy/(x+y)]
两边对y求导得
z'y/z=xln(x+y)+xy/(x+y)
z'x=z[xln(x+y)+xy/(x+y)]
dz=z'xdx+z'ydy
=z[yln(x+y)+xy/(x+y)]dx+z[xln(x+y)+xy/(x+y)]dy
两边对x求导得
z'x/z=yln(x+y)+xy/(x+y)
z'x=z[yln(x+y)+xy/(x+y)]
两边对y求导得
z'y/z=xln(x+y)+xy/(x+y)
z'x=z[xln(x+y)+xy/(x+y)]
dz=z'xdx+z'ydy
=z[yln(x+y)+xy/(x+y)]dx+z[xln(x+y)+xy/(x+y)]dy
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询