y=e^(-x)可以看做y=e^t和t=-x的复合,根据复合函数求导的法则,先将y对t求导得e^t,
然后t对x求导得-1,两个导数相乘,并将结果中t换成-x,从而(e^-x)'=e^(-x)*(-1)=-e^(-x)
常用的导数公式
y=c(c为常数),y'=0
y=x^n,y'=nx^(n-1)
y=a^x,y'=lna*a^x;y=e^x,y'=e^x
y=logax(a为底数,x为真数); y'=1/(x*lna);y=lnx,y'=1/x
y=sinx y'=cosx
y=cosx y'=-sinx