初中数学题求最后一问

 我来答
hbc3193034
2022-06-26 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
(1)y=(3/4)x^2+9x/4-3.
(2)②由(3/4)x^2+9x/4-3=0,得x^2+3x-4=0,解得x1=1,x2=-4,
所以B(-4,0),
BC:x/(-4)+y/(-3)=1,
设P(p,(3/4)p^2+9p/4-3),其中p≠1,0,-4.
PD:x=p交BC于E(p,yE):
-p/4+y/(-3)=1,
yE=-3(1+p/4)=-3-3p/4.
设E'(0,e),EE'关于PC对称,
所以CE=CE',PE=PE',
所以p^2+9p^2/16=(e+3)^2,
25p^2/16=(e+3)^2,e+3<0,p<0,
所以e=5p/4-3,①
代入[(3/4)p^2+9p/4+3p/4]^2=p^2+[(3/4)p^2+9p/4-3-e]^2.且两边都除以p^2,得
[3p/4+3]^2=1+[3p/4+1]^2,
两边都乘以16,得(3p+12)^2=16+(3p+4)^2,
9p^2+72p+144=16+9p^2+24p+16,
48p=-112,
p=-7/3,
代入①,e=-71/12,
yP=(3/4)(p-1)(p+4)=(3/4)(-10/3)(5/3)=-25/6,
PE'^2=p^2+(yP-e)^2=49/9+(-25/6+71/12)^2
=49/9+(7/4)^2
=49/9+49/16
=49*25/144,
PE'=35/12,
CE'=|e+3|=35/12,,
所以四边形PECE'的周长=2(CE'+PE')=35/3.
仅供参考。
体育wo最爱
高粉答主

2022-06-25 · 说的都是干货,快来关注
知道大有可为答主
回答量:3.8万
采纳率:72%
帮助的人:1.1亿
展开全部

详见下图,图片可点击放大:

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式