求ln(1+x^2)的n阶导数,怎么用泰勒公式做呢? (带过程)
展开全部
先利用函数ln(1+x)的幂级数展开式 ln(1+x)=∑(-1)^n x^(n+1)/(n+1), n=0到∞求和 于是y=ln(1+x²)=∑(-1)^n x^(2n+2)/(n+1) 依次求导可得 y'=∑(-1)^n [(2n+2)/(n+1)]x^(2n+1) y''=∑(-1)^n [(2n+2)(2n+1)/(n+1)]x^(2n) ....... y的k阶导数=∑(-1)^n {[(2n+2)(2n+1)...(2n-k+3)]/(n+1)} x^(2n-k+2) 不明白可以追问,如果有帮助,请选为满意回答!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询