
设n为自然数,求证n+1分之1+n+2分之1+n+3分之1+...+3n分之1大于4n+1分之4n
1个回答
展开全部
第一项与倒数第一项相加,第二项与倒数第二项相加。。。
[1/n+1]+[1/n+2]+....+[1/3n]=[1/n+1]+[1/3n] +[1/n+2]+[1/3n-1] +.... +[1/2n]+[1/2n+1]
=(4n+1){1/(n+1)(3n) +1/(n+2)(3n-1) +....+1/(2n)(2n+1) }
>(4n+1)*n*1/(2n)(2n+1)=(4n+1)/2(2n+1)=(4n+1)/(4n+2)
>4n/4n+1
[1/n+1]+[1/n+2]+....+[1/3n]=[1/n+1]+[1/3n] +[1/n+2]+[1/3n-1] +.... +[1/2n]+[1/2n+1]
=(4n+1){1/(n+1)(3n) +1/(n+2)(3n-1) +....+1/(2n)(2n+1) }
>(4n+1)*n*1/(2n)(2n+1)=(4n+1)/2(2n+1)=(4n+1)/(4n+2)
>4n/4n+1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询