九条直线相交最多有几个交点?最少呢?
1个回答
展开全部
当有2条直线的时候,交点有1个
当有3条直线的时候,第三条直线应该与前两条直线均相交,产生2个新交点,则一共有1+2=3个交点
当有4条直线的时候,第四条直线应该与前三条直线均相交,产生3个新交点,则一共有1+2+3=6个交点
设当有n条直线的时候结论成立,设Sn为直线为n条时的交点的个数,则有Sn=1+2+3+...+(n-1)=n(n-1)/2
则当有n+1条直线的时候,交点的个数应该为Sn+n=n(n-1)/2+n=n(n+1)/n=Sn+1
所以推论成立.
即n条直线相交,最多可以有n(n-1)/2个交点
10条直线的时候有45个交点
100条直线的时候有4950个交点
当有3条直线的时候,第三条直线应该与前两条直线均相交,产生2个新交点,则一共有1+2=3个交点
当有4条直线的时候,第四条直线应该与前三条直线均相交,产生3个新交点,则一共有1+2+3=6个交点
设当有n条直线的时候结论成立,设Sn为直线为n条时的交点的个数,则有Sn=1+2+3+...+(n-1)=n(n-1)/2
则当有n+1条直线的时候,交点的个数应该为Sn+n=n(n-1)/2+n=n(n+1)/n=Sn+1
所以推论成立.
即n条直线相交,最多可以有n(n-1)/2个交点
10条直线的时候有45个交点
100条直线的时候有4950个交点
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询